ЭКСТРЕМАЛЬНЫЕ ЗАДАЧИ НА ФРЕЙМАХ МЕРСЕДЕС-БЕНЦ*

B. H. Малозёмов malv@math.spbu.ru

25 марта 2009 г.

Доклад представляет собой вариации на темы из [1].

 ${f 1}^{\circ}$. Пусть $\{b_j^n\}_{j=1}^{n+1}$ — фрейм Мерседес-Бенц в ${\Bbb R}^n$ [2]. Здесь и далее верхний индекс указывает на размерность вектора.

Возьмём ненулевой вектор a^n и рассмотрим экстремальную задачу

$$F(\xi_1, \dots, \xi_n, \xi_{n+1}) \to \min$$

$$\frac{n}{n+1} \sum_{j=1}^{n+1} \xi_j b_j^n = a^n.$$
(1)

Приведём конструктивный способ сведения задачи (1) к одномерной задаче безусловной минимизации.

2°. Напомним [2], что фреймы Мерседес-Бенц определяются рекуррентно:

$$b_1^1 = -1, \quad b_2^1 = 1;$$

$$b_j^k = \begin{pmatrix} c_k b_j^{k-1} \\ -1/k \end{pmatrix}, \quad j \in 1: k; \quad b_{k+1}^k = (0, \dots, 0, 1)^T; \quad k = 2, 3, \dots, n,$$

$$(2)$$

где $c_k = \sqrt{k^2 - 1}/k$. При этом

$$\sum_{j=1}^{n+1} b_j^n = \mathbb{O},$$

$$\frac{n}{n+1} \sum_{j=1}^{n+1} \langle a^n, b_j^n \rangle b_j^n = a^n.$$
(3)

^{*}Семинар по дискретному гармоническому анализу и геометрическому моделированию «DHA & CAGD»: http://www.dha.spb.ru/

В частности, вектор ξ_*^{n+1} с компонентами $\xi_*^{n+1}(j) = \langle a^n, b_j^n \rangle$ является планом задачи (1).

Найдём множество решений однородной системы

$$\sum_{j=1}^{n+1} \xi_j \, b_j^n = \mathbb{O} \,. \tag{4}$$

Ранг матрицы системы (4) равен n, поскольку подматрица, составленная из столбцов b_2^n, \ldots, b_{n+1}^n , — нижнетреугольная с положительными диагональными элементами. Значит, множество решений системы (4) одномерно. Вектор ξ_0^{n+1} с компонентами $\xi_0^{n+1}(j) = 1$ согласно (3) удовлетворяет системе (4). Следовательно, множество решений системы (4) имеет вид $\xi^{n+1} = \lambda \, \xi_0^{n+1}$, где $\lambda \in \mathbb{R}$.

Множество планов задачи (1) допускает представление

$$\xi^{n+1} = \xi_*^{n+1} + \lambda \, \xi_0^{n+1}, \qquad \lambda \in \mathbb{R} \,.$$

Сама задача (1) сводится к одномерной задаче безусловной минимизации

$$f(\lambda) := F\left(\xi_*^{n+1} + \lambda \, \xi_0^{n+1}\right) \to \min_{\lambda \in \mathbb{R}}. \tag{5}$$

 ${f 3}^\circ$. Покажем, как вычислять компоненты вектора ξ_*^{n+1} . Введём обозначения $a^k=(a_1,\dots,a_k)^T;\;\;\xi_*^{k+1}(j)=\langle a^k,b_j^k\rangle,\;\;j\in 1:k+1.$

ЛЕММА. Справедливо рекуррентное соотношение

$$\xi_*^{k+1}(j) = c_k \, \xi_*^k(j) - \frac{1}{k} \, a_k \,, \quad j \in 1 : k \,; \quad \xi_*^{k+1}(k+1) = a_k \,; \quad k = 2, 3, \dots, n \,;$$

$$\xi_*^2(1) = -a_1 \,, \quad \xi_*^2(2) = a_1 \,. \tag{6}$$

Доказательство очевидным образом следует из (2).

Вычисление вектора ξ_*^{n+1} по формуле (6) можно осуществить в одном массиве («на месте»). В начальный момент (при k=1) массив заполнен так: $(-a_1, a_1, a_2, \ldots, a_n)$.

 4° . Рассмотрим три частных случая задачи (5). Предварительно упростим обозначение

$$\xi_j^* = \xi_*^{n+1}(j), \quad j \in 1: n+1.$$

Отметим, что

$$\sum_{j=1}^{n+1} \xi_j^* = 0. (7)$$

Действительно, согласно (3)

$$\sum_{j=1}^{n+1} \xi_j^* = \sum_{j=1}^{n+1} \langle a^n, b_j^n \rangle = \left\langle a^n, \sum_{j=1}^{n+1} b_j^n \right\rangle = 0.$$

Пусть

$$f_0(\lambda) = \|\xi_*^{n+1} + \lambda \xi_0^{n+1}\|_2^2 = \sum_{j=1}^{n+1} (\lambda + \xi_j^*)^2.$$

ПРЕДЛОЖЕНИЕ 1. Минимум функции $f_0(\lambda)$ на \mathbb{R} достигается в единственной точке $\lambda = 0$.

Доказательство следует из (7).

Таким образом, среди разложений вектора a^n по фрейму Мерседес-Бенц фреймовые коэффициенты $\xi_j^* = \langle a^n, b_j^n \rangle, \ j \in 1: n+1$, образуют вектор с наименьшей l_2 -нормой.

 5° . Пусть теперь

$$f_1(\lambda) = \|\xi_*^{n+1} + \lambda \xi_0^{n+1}\|_1 = \sum_{j=1}^{n+1} |\lambda + \xi_j^*|.$$

Мы хотим найти разложение вектора a^n по фрейму Мерседес-Бенц с наименьшей l_1 -нормой вектора коэффициентов разложения.

Упорядочим числа $(-\xi_j^*)$ по неубыванию. Полученную последовательность обозначим $\lambda_1 \leqslant \lambda_2 \leqslant \cdots \leqslant \lambda_{n+1}$. Очевидно, что

$$f_1(\lambda) = \sum_{j=1}^{n+1} |\lambda - \lambda_j|.$$

При этом согласно (7)

$$\sum_{j=1}^{n+1} \lambda_j = 0.$$

Функция $f_1(\lambda)$ является выпуклой ломаной. При $\lambda \leqslant \lambda_1$ имеем

$$f_1(\lambda) = -\sum_{j=1}^{n+1} (\lambda - \lambda_j) = -(n+1) \lambda.$$

Аналогично при $\lambda \geqslant \lambda_{n+1}$

$$f_1(\lambda) = \sum_{j=1}^{n+1} (\lambda - \lambda_j) = (n+1) \lambda.$$

Пусть $\lambda \in [\lambda_s, \lambda_{s+1}]$. Тогда

$$f_1(\lambda) = \sum_{j=1}^{s} (\lambda - \lambda_j) - \sum_{j=s+1}^{n+1} (\lambda - \lambda_j).$$

В частности,

$$f_1(\lambda_{s+1}) - f_1(\lambda_s) = s \left(\lambda_{s+1} - \lambda_s\right) - \left(n+1-s\right) \left(\lambda_{s+1} - \lambda_s\right) =$$
$$= \left(2s - n - 1\right) \left(\lambda_{s+1} - \lambda_s\right).$$

При нечётном n положим $s_0=\frac{n+1}{2}$. Ясно, что на множестве $(-\infty,\lambda_{s_0}]$ функция $f_1(\lambda)$ строго убывает, а на множестве $[\lambda_{s_0+1},+\infty)$ строго возрастает. Если $\lambda_{s_0+1}=\lambda_{s_0}$, то $\lambda^*=\lambda_{s_0}$ — единственная точка минимума $f_1(\lambda)$ на $\mathbb R$. Если же $\lambda_{s_0+1}>\lambda_{s_0}$, то множество точек минимума совпадает с отрезком $[\lambda_{s_0},\lambda_{s_0+1}]$.

При чётном n положим $s_0 = \frac{n+2}{2}$. В этом случае функция $f_1(\lambda)$ строго убывает на $(-\infty, \lambda_{s_0}]$ и строго возрастает на $[\lambda_{s_0}, +\infty)$. Единственной точкой минимума будет $\lambda^* = \lambda_{s_0}$.

Подведём итог.

ПРЕДЛОЖЕНИЕ 2. Минимум функции $f_1(\lambda)$ на \mathbb{R} достигается в точке $\lambda^* = \lambda_{s_0}$, где $s_0 = \left\lfloor \frac{n+2}{2} \right\rfloor$. Это единственная точка минимума при чётном п. При нечётном п она единственна, когда $\lambda_{s_0} = \lambda_{s_0+1}$. Если же $\lambda_{s_0} < \lambda_{s_0+1}$, то множество точек минимума совпадает с отрезком $[\lambda_{s_0}, \lambda_{s_0+1}]$.

Отметим, что план $\xi^{n+1}=\xi_*^{n+1}+\lambda^*\xi_0^{n+1}$ задачи (1) имеет наименьшую l_1 -норму. При этом хотя бы одна компонента этого плана равна нулю.

6°. Согласно (3) при любом $\lambda \in \mathbb{R}$ справедлива формула

$$a^{n} = \frac{n}{n+1} \sum_{j=1}^{n+1} \left[\langle a^{n}, b_{j}^{n} \rangle + \lambda \right] b_{j}^{n}.$$

Это значит, что в разложении вектора a^n по фрейму Мерседес-Бенц можно обеспечить равенство нулю любого коэффициента.

7°. В случае, когда целевая функция имеет вид

$$f_2(\lambda) = \max_{j \in 1: n+1} |\lambda + \xi_j^*| = \max_{j \in 1: n+1} |\lambda - \lambda_j|,$$

справедливо следующие очевидное утверждение.

ПРЕДЛОЖЕНИЕ 3. Минимум функции $f_2(\lambda)$ на \mathbb{R} достигается в единственной точке $\lambda_* = \frac{1}{2}(\lambda_1 + \lambda_{n+1})$.

План $\xi^{n+1}=\xi_*^{n+1}+\lambda_*\,\xi_0^{n+1}$ задачи (1) имеет наименьшую чебышёвскую норму.

8°. К теме доклада примыкает работа [3].

ЛИТЕРАТУРА

- 1. Новиков С. Я., Рябцов И. С. Оптимизация фреймовых представлений для сэкатого зондирования МВ-фрейма. 2009. 12 с. Препринт.
- 2. Малозёмов В. Н., Певный А. Б. *Равноугольные экёсткие фреймы* // Проблемы матем. анализа. Вып. 39, 2009. С. 3–25.
- 3. Donoho D. L. Compressed sensing // IEEE Trans. Inf. Theory. 2006. V. 52(4). P. 1289–1306.