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We present an attempt to reformulate and to complete the papers [1, 2].

1◦. We consider the mathematical programming problem

f(x) → inf ,

gi(x) ≤ 0 , i ∈ 1 : s ;

x ∈ P .

(1)

We assume that P ⊂ R
n is an arbitrary nonempty set (possibly discrete) and that

f, g1, . . . , gs are arbitrary finite functions defined on P . We define

X =
{
x ∈ P | gi(x) ≤ 0, i ∈ 1 : s

}
,

f ∗ = inf
{
f(x) | x ∈ X

}
.

We introduce the Lagrangian

L(x, y) = f(x) +
s∑

i=1

yi gi(x)

and define the dual problem

ϕ(y) := inf
{
L(x, y) | x ∈ P

} → sup
y∈R

s
+

. (2)

Here R
s
+ is the set of non-negative vectors y = (y1, . . . , ys). We remark that

the Lagrangian function L(x, y) for a fixed x is affine as a function of y and,
consequently, the dual objective function ϕ(y) is concave in R

s
+. We denote

ϕ∗ = sup
{
ϕ(y) | y ∈ R

s
+

}
.
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In connection to (1), (2) we study the parametric auxiliary problem

f(x) → inf ,

gi(x) ≤ vi , i ∈ 1 : s ;

x ∈ P .

(3)

We denote
X(v) =

{
x ∈ P | gi(x) ≤ vi , i ∈ 1 : s

}
.

Function
F (v) = inf

{
f(x) | x ∈ X(v)

}
, v ∈ R

s,

is the sensitivity function for problem (1).
The initial problem (1) coincides with (3) for v = O. Function F (v) reflects

the characteristics of such inclusion. Moreover the sensitivity function is related
to the objective function of the dual problem (2). The following property holds:

LEMMA. For all y ∈ R
s
+ function ϕ(y) can be expressed as:

ϕ(y) = inf
{
F (v) + 〈y, v〉 | v ∈ R

s
}
.

The sensitivity function plays an important role in investigating both prob-
lems (1) and (2).

2◦. Relatively to problem (1) we make the natural assumptions:

X 	= ∅ , f ∗ > −∞. (4)

From the definition it follows that f ∗ ≥ ϕ∗. A first question which has to be
addressed is to investigate when the duality relationship f ∗ = ϕ∗ holds. To this
aim, we have the following theorem.

THEOREM 1. The duality condition holds if and only if the ε-subdifferential of
the sensitivity function at point zero, ∂εF (O), is not empty for all ε > 0.

3◦. The condition
∂F (O) 	= ∅ (5)

is defined as global regularity of problem (1). Substantially it characterizes the
“regularity” of the inclusion of problem (1) into the family of parametric problems
defined by (3).

THEOREM 2. The global regularity condition is satisfied if and only if f ∗ = ϕ∗

and the dual problem (2) has solution.

From the proof of the theorem we observe that:

• any point in −∂F (O) is a solution to (2);

• whenever condition f ∗ = ϕ∗ is satisfied, any solution of the dual belongs to
the set −∂F (O).
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4◦. We provide now a sufficient condition for ensuring global regularity of prob-
lem (1).

THEOREM 3. Let f ∗ = ϕ∗ and assume in addition that Slater condition is
satisfied, that is there exists a point z ∈ P , such that gi(z) < 0 for all i ∈ 1 : s.
Then ∂F (O) 	= ∅.

5◦. We assume that the global regularity condition (5) is satisfied for prob-
lem (1). Consider any dual solution y∗ with the related Lagrangian problem

L(x, y∗) → inf
x∈P

. (6)

Its extremal value satisfies the condition ϕ(y∗) = ϕ∗.

THEOREM 4 (Lagrange principle). Any solution x∗ of the problem (1) satisfying
the global regularity condition solves problem (6). Moreover the complementarity
condition

y∗i gi(x
∗) = 0 , i ∈ 1 : s . (7)

is satisfied.

Now we present an example where both problems (1) and (6) have unique
solution, but they are different from each other.

EXAMPLE. Consider the extremal problem

f(x) := x− 1 → inf ,

g1(x) := x2 − 1 ≤ 0 ,

g2(x) := −x2 + 1 ≤ 0 ,

P = R+ .

It has optimal solution x∗ = 1, with corresponding optimal value f ∗ = 0.
We consider the Lagrangian function

L(x, y) = x− 1 + y1 (x2 − 1) + y2 (−x2 + 1) =

= x2 (y1 − y2) + x− (y1 − y2 + 1) .

For the dual objective function it holds

ϕ(y) := inf
{
L(x, y) | x ≥ 0

}
=

{
−(y1 − y2 + 1) for y1 − y2 ≥ 0 ,

−∞ for y1 − y2 < 0 .

Here it is y ∈ R
2
+. Obviously it holds ϕ∗ = −1.
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Any y∗ ≥ O with y∗1 = y∗2 solves the dual. For any such vector the Lagrangian
problem has the form

L(x, y∗) := x− 1 → inf
x≥0

.

Its unique solution is x̂ = 0, which is different from the optimal solution x∗ = 1 of
the initial problem.

Note that in the example the duality condition does not hold, since f ∗ = 0 and
ϕ∗ = −1.

6◦. We discuss now the sufficient condition for global optimality. A pair
{x∗, y∗}, where x∗ ∈ P , y∗ ∈ R

s
+, is said to be globally optimal [3, p. 144], if

L(x∗, y∗) = min
x∈P

L(x, y∗) ;(α)

y∗i gi(x
∗) = 0 , i ∈ 1 : s ;(β)

gi(x
∗) ≤ 0 , i ∈ 1 : s .(γ)

THEOREM 5. If {x∗, y∗} is a globally optimal pair then x∗ solves problem (1),
y∗ solves problem (2) and it is f(x∗) = ϕ(y∗).

P r o o f. Condition (γ) implies x∗ ∈ X. For any x ∈ X from (β) and (α) it follows

f(x∗) = f(x∗) +
s∑

i=1

y∗i gi(x
∗) = L(x∗, y∗) ≤ L(x, y∗) =

= f(x) +
s∑

i=1

y∗i gi(x) ≤ f(x) .

Such condition ensures that x∗ solves problem (1) and it is f(x∗) = f ∗. Moreover

ϕ∗ ≥ ϕ(y∗) = inf
{
L(x, y∗) | x ∈ P

}
= L(x∗, y∗) =

= f(x∗) +
s∑

i=1

y∗i gi(x
∗) = f(x∗) = f ∗ ≥ ϕ∗,

which implies both ϕ(y∗) = ϕ∗, f(x∗) = ϕ(y∗) and the proof is complete.

THEOREM 6. The globally optimal pair {x∗, y∗} is a saddle point of the La-
grangian function, that is for all x ∈ P and y ∈ R

s
+ the following holds

L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) . (8)



5

P r o o f. For all y ∈ R
s
+ we have

L(x∗, y) = f(x∗) +
s∑

i=1

yi gi(x
∗) ≤ f(x∗) ,

thus
sup

{
L(x∗, y) | y ∈ R

s
+

} ≤ f(x∗) .

Taking into account f(x∗) = ϕ(y∗), we have

L(x∗, y∗) ≤ sup
{
L(x∗, y) | y ∈ R

s
+

} ≤ f(x∗) =

= ϕ(y∗) = inf
{
L(x, y∗) | x ∈ P

} ≤ L(x∗, y∗) .

Consequently we obtain

sup
{
L(x∗, y) | y ∈ R

s
+

}
= L(x∗, y∗) = inf

{
L(x, y∗) | x ∈ P

}
,

which is equivalent to (8), and the proof is complete.

7◦. As a simple example of application of the general results previously stated
we consider the linear programming problem

f(x) := 〈c, x〉 → inf ,

A x ≤ b ,

P = R
n
+ .

(9)

The dual of such linear program is

ψ(u) := 〈b, u〉 → sup ,

uA ≤ c , u ≤ O .
(10)

Let U be the set of feasible solutions to (10). Under hypothesis (4) both prob-
lems (9) and (10) have solution and it is

f ∗ := min
x∈X

f(x) = max
u∈U

ψ(u) =: ψ∗.

Now we study the connection between (10) and (2). We have

ϕ(y) := inf
{〈c, x〉 + 〈y,Ax− b〉 | x ∈ R

n
+

}
=

= −〈b, y〉 + inf
{〈c+ y A, x〉 | x ∈ R

n
+

}
.
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Obviously it is

inf
{〈c+ y A, x〉 | x ∈ R

n
+

}
=

{
0 , if c+ y A ≥ O,

−∞ , otherwise.

Consequently problem (2) has the form

ϕ(y) := −〈b, y〉 → sup ,

c+ y A ≥ O , y ≥ O .
(11)

Problems (10) and (11) are equivalent. Their solution sets U∗ and Y ∗ satisfy
the conditions Y ∗ = −U∗, and ϕ∗ = ψ∗.

We have obtained that f ∗ = ψ∗ = ϕ∗ and that problem (11) has solution. From
theorem 2, under the hypothesis (4), the problem (9) satisfies the global regularity
condition.

THEOREM 7. The solution set of problem (10) coincides with the subdifferential
of the sensitivity function of problem (9) evaluated at point zero, that is U∗ =
∂F (O).

P r o o f. We write the parametric auxiliary problem

f(x) := 〈c, x〉 → inf ,

A x ≤ b+ v ,

P = R
n
+ .

We consider any u∗ ∈ U∗ and we show

F (v) − F (O) ≥ 〈u∗, v〉 ∀ v ∈ R
s. (12)

In fact for all x ∈ X(v) we have

〈c, x〉 ≥ 〈c, x〉 + 〈u∗, b+ v − Ax〉 = 〈b, u∗〉 + 〈u∗, v〉 +

+ 〈c− u∗A, x〉 ≥ 〈b, u∗〉 + 〈u∗, v〉 = f ∗ + 〈u∗, v〉 .
Then it follows for each v ∈ R

s

F (v) ≥ f ∗ + 〈u∗, v〉 .
Taking into account that it is f ∗ = F (O), (12) follows.

On the other hand let u∗ ∈ ∂F (O), so that (12) is satisfied. By substituting
into (12) v by the unit vectors ei and taking into account that it is F (ei) ≤ F (O),
we have u∗i ≤ 0. Thus it is u∗ ≤ O.
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Now, from (12) we have

F (v) + 〈−u∗, v〉 ≥ F (O) ∀ v ∈ R
s.

From the lemma at section 1◦, ϕ(−u∗) ≥ F (O). The relations

ϕ∗ ≥ ϕ(−u∗) ≥ F (O) = f ∗ ≥ ϕ∗

ensure that the vector −u∗ solves problem (11). In this case, as previously ob-
served, u∗ solves (10) and the proof is complete.

The following result (see [4]) is related to previous theorem.

THEOREM 8. If u is a feasible solution of the dual problem (10), then u ∈
∂εF (O), where ε = f ∗ − 〈b, u〉.
P r o o f. We must prove that

F (v) − F (O) ≥ 〈u, v〉 − ε ∀ v ∈ R
s.

The property is obvious for X(v) = ∅. Now let X(v) 	= ∅. For each x ∈ X(v) we
have

〈c, x〉 ≥ 〈c, x〉 + 〈u, b+ v − Ax〉 = 〈b, u〉 + 〈u, v〉 +

+ 〈c− uA, x〉 ≥ f ∗ − ε+ 〈u, v〉 = F (O) + 〈u, v〉 − ε.

The property follows by considering that the above relation holds for all x ∈ X(v).

8◦. A recent survey on the sensitivity theory in optimization is in [5].
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