GLOBAL REGULARITY IN MATHEMATICAL PROGRAMMING*

Manlio Gaudioso V. N. Malozemov gaudioso@deis.unical.it malv@math.spbu.ru

October 28, 2008

We present an attempt to reformulate and to complete the papers [1, 2].

 1° . We consider the mathematical programming problem

$$f(x) \to \inf,$$

$$g_i(x) \le 0, \quad i \in 1:s;$$

$$x \in P.$$
(1)

We assume that $P \subset \mathbb{R}^n$ is an arbitrary nonempty set (possibly discrete) and that f, g_1, \ldots, g_s are arbitrary finite functions defined on P. We define

$$X = \{ x \in P \mid g_i(x) \le 0, \ i \in 1 : s \},\$$
$$f^* = \inf \{ f(x) \mid x \in X \}.$$

We introduce the Lagrangian

$$L(x, y) = f(x) + \sum_{i=1}^{s} y_i g_i(x)$$

and define the dual problem

$$\varphi(y) := \inf \left\{ L(x, y) \mid x \in P \right\} \to \sup_{y \in \mathbb{R}^s_+} .$$
⁽²⁾

Here \mathbb{R}^s_+ is the set of non-negative vectors $y = (y_1, \ldots, y_s)$. We remark that the Lagrangian function L(x, y) for a fixed x is affine as a function of y and, consequently, the dual objective function $\varphi(y)$ is *concave* in \mathbb{R}^s_+ . We denote

$$\varphi^* = \sup \left\{ \varphi(y) \mid y \in \mathbb{R}^s_+ \right\}.$$

^{*}Seminar on Discrete Harmonic Analysis and Computer Aided Geometric Design (DHA & CAGD): http://www.dha.spb.ru/

In connection to (1), (2) we study the parametric auxiliary problem

$$f(x) \to \inf,$$

$$g_i(x) \le v_i, \quad i \in 1:s;$$

$$x \in P.$$
(3)

We denote

$$X(v) = \{ x \in P \mid g_i(x) \le v_i \,, \ i \in 1 : s \}.$$

Function

$$F(v) = \inf \left\{ f(x) \mid x \in X(v) \right\}, \quad v \in \mathbb{R}^s,$$

is the sensitivity function for problem (1).

The initial problem (1) coincides with (3) for $v = \mathbb{O}$. Function F(v) reflects the characteristics of such inclusion. Moreover the sensitivity function is related to the objective function of the dual problem (2). The following property holds:

LEMMA. For all $y \in \mathbb{R}^s_+$ function $\varphi(y)$ can be expressed as:

$$\varphi(y) = \inf \left\{ F(v) + \langle y, v \rangle \mid v \in \mathbb{R}^s \right\}.$$

The sensitivity function plays an important role in investigating both problems (1) and (2).

 2° . Relatively to problem (1) we make the natural assumptions:

$$X \neq \varnothing, \qquad f^* > -\infty.$$
 (4)

From the definition it follows that $f^* \ge \varphi^*$. A first question which has to be addressed is to investigate when the *duality relationship* $f^* = \varphi^*$ holds. To this aim, we have the following theorem.

THEOREM 1. The duality condition holds if and only if the ε -subdifferential of the sensitivity function at point zero, $\partial_{\varepsilon} F(\mathbb{O})$, is not empty for all $\varepsilon > 0$.

 3° . The condition

$$\partial F(\mathbb{O}) \neq \emptyset \tag{5}$$

is defined as *global regularity* of problem (1). Substantially it characterizes the "regularity" of the inclusion of problem (1) into the family of parametric problems defined by (3).

THEOREM 2. The global regularity condition is satisfied if and only if $f^* = \varphi^*$ and the dual problem (2) has solution.

From the proof of the theorem we observe that:

- any point in $-\partial F(\mathbb{O})$ is a solution to (2);
- whenever condition $f^* = \varphi^*$ is satisfied, any solution of the dual belongs to the set $-\partial F(\mathbb{O})$.

THEOREM 3. Let $f^* = \varphi^*$ and assume in addition that Slater condition is satisfied, that is there exists a point $z \in P$, such that $g_i(z) < 0$ for all $i \in 1 : s$. Then $\partial F(\mathbb{O}) \neq \emptyset$.

5°. We assume that the global regularity condition (5) is satisfied for problem (1). Consider any dual solution y^* with the related Lagrangian problem

$$L(x, y^*) \to \inf_{x \in P}.$$
 (6)

Its extremal value satisfies the condition $\varphi(y^*) = \varphi^*$.

THEOREM 4 (Lagrange principle). Any solution x^* of the problem (1) satisfying the global regularity condition solves problem (6). Moreover the complementarity condition

$$y_i^* g_i(x^*) = 0, \quad i \in 1:s.$$
 (7)

is satisfied.

Now we present an example where both problems (1) and (6) have unique solution, but they are different from each other.

EXAMPLE. Consider the extremal problem

$$f(x) := x - 1 \to \inf, g_1(x) := x^2 - 1 \le 0, g_2(x) := -x^2 + 1 \le 0, P = \mathbb{R}_+.$$

It has optimal solution $x^* = 1$, with corresponding optimal value $f^* = 0$.

We consider the Lagrangian function

$$L(x, y) = x - 1 + y_1 (x^2 - 1) + y_2 (-x^2 + 1) =$$

= $x^2 (y_1 - y_2) + x - (y_1 - y_2 + 1).$

For the dual objective function it holds

$$\varphi(y) := \inf \left\{ L(x,y) \mid x \ge 0 \right\} = \begin{cases} -(y_1 - y_2 + 1) & \text{for } y_1 - y_2 \ge 0, \\ -\infty & \text{for } y_1 - y_2 < 0. \end{cases}$$

Here it is $y \in \mathbb{R}^2_+$. Obviously it holds $\varphi^* = -1$.

Any $y^* \geq \mathbb{O}$ with $y_1^* = y_2^*$ solves the dual. For any such vector the Lagrangian problem has the form

$$L(x, y^*) := x - 1 \to \inf_{x \ge 0}$$

Its unique solution is $\hat{x} = 0$, which is different from the optimal solution $x^* = 1$ of the initial problem.

Note that in the example the duality condition does not hold, since $f^* = 0$ and $\varphi^* = -1$.

6°. We discuss now the sufficient condition for global optimality. A pair $\{x^*, y^*\}$, where $x^* \in P$, $y^* \in \mathbb{R}^s_+$, is said to be globally optimal [3, p. 144], if

(
$$\alpha$$
) $L(x^*, y^*) = \min_{x \in P} L(x, y^*);$

(
$$\beta$$
) $y_i^* g_i(x^*) = 0, \quad i \in 1:s;$

 $(\gamma) \qquad \qquad g_i(x^*) \le 0, \qquad i \in 1:s.$

THEOREM 5. If $\{x^*, y^*\}$ is a globally optimal pair then x^* solves problem (1), y^* solves problem (2) and it is $f(x^*) = \varphi(y^*)$.

Proof. Condition (γ) implies $x^* \in X$. For any $x \in X$ from (β) and (α) it follows

$$f(x^*) = f(x^*) + \sum_{i=1}^{s} y_i^* g_i(x^*) = L(x^*, y^*) \le L(x, y^*) =$$
$$= f(x) + \sum_{i=1}^{s} y_i^* g_i(x) \le f(x) .$$

Such condition ensures that x^* solves problem (1) and it is $f(x^*) = f^*$. Moreover

$$\begin{split} \varphi^* &\geq \varphi(y^*) = \inf \left\{ L(x, y^*) \mid x \in P \right\} = L(x^*, y^*) = \\ &= f(x^*) + \sum_{i=1}^s y_i^* g_i(x^*) = f(x^*) = f^* \geq \varphi^*, \end{split}$$

which implies both $\varphi(y^*) = \varphi^*$, $f(x^*) = \varphi(y^*)$ and the proof is complete. \Box

THEOREM 6. The globally optimal pair $\{x^*, y^*\}$ is a saddle point of the Lagrangian function, that is for all $x \in P$ and $y \in \mathbb{R}^s_+$ the following holds

$$L(x^*, y) \le L(x^*, y^*) \le L(x, y^*).$$
 (8)

Proof. For all $y \in \mathbb{R}^s_+$ we have

$$L(x^*, y) = f(x^*) + \sum_{i=1}^{s} y_i g_i(x^*) \le f(x^*),$$

thus

$$\sup\left\{L(x^*, y) \mid y \in \mathbb{R}^s_+\right\} \le f(x^*).$$

Taking into account $f(x^*) = \varphi(y^*)$, we have

$$L(x^*, y^*) \le \sup \{ L(x^*, y) \mid y \in \mathbb{R}^s_+ \} \le f(x^*) =$$

= $\varphi(y^*) = \inf \{ L(x, y^*) \mid x \in P \} \le L(x^*, y^*).$

Consequently we obtain

$$\sup \left\{ L(x^*, y) \mid y \in \mathbb{R}^s_+ \right\} = L(x^*, y^*) = \inf \left\{ L(x, y^*) \mid x \in P \right\},\$$

which is equivalent to (8), and the proof is complete.

 $7^\circ.$ As a simple example of application of the general results previously stated we consider the linear programming problem

$$f(x) := \langle c, x \rangle \to \inf,$$

$$A x \le b,$$

$$P = \mathbb{R}^n_+.$$
(9)

The dual of such linear program is

$$\psi(u) := \langle b, u \rangle \to \sup, u A \le c, \quad u \le \mathbb{O}.$$
(10)

Let U be the set of feasible solutions to (10). Under hypothesis (4) both problems (9) and (10) have solution and it is

$$f^* := \min_{x \in X} f(x) = \max_{u \in U} \psi(u) =: \psi^*.$$

Now we study the connection between (10) and (2). We have

$$\varphi(y) := \inf \left\{ \langle c, x \rangle + \langle y, A x - b \rangle \mid x \in \mathbb{R}^n_+ \right\} =$$
$$= -\langle b, y \rangle + \inf \left\{ \langle c + y A, x \rangle \mid x \in \mathbb{R}^n_+ \right\}.$$

Obviously it is

$$\inf \left\{ \langle c + y A, x \rangle \mid x \in \mathbb{R}^n_+ \right\} = \begin{cases} 0, & \text{if } c + y A \ge \mathbb{O}, \\ -\infty, & \text{otherwise.} \end{cases}$$

Consequently problem (2) has the form

$$\begin{aligned} \varphi(y) &:= -\langle b, y \rangle \to \sup, \\ c + y A \ge \mathbb{O}, \quad y \ge \mathbb{O}. \end{aligned}$$
(11)

Problems (10) and (11) are equivalent. Their solution sets U^* and Y^* satisfy the conditions $Y^* = -U^*$, and $\varphi^* = \psi^*$.

We have obtained that $f^* = \psi^* = \varphi^*$ and that problem (11) has solution. From theorem 2, under the hypothesis (4), the problem (9) satisfies the global regularity condition.

THEOREM 7. The solution set of problem (10) coincides with the subdifferential of the sensitivity function of problem (9) evaluated at point zero, that is $U^* = \partial F(\mathbb{O})$.

Proof. We write the parametric auxiliary problem

$$f(x) := \langle c, x \rangle \to \inf,$$

$$A x \le b + v,$$

$$P = \mathbb{R}^n_+.$$

We consider any $u^* \in U^*$ and we show

$$F(v) - F(\mathbb{O}) \ge \langle u^*, v \rangle \quad \forall \ v \in \mathbb{R}^s.$$
(12)

In fact for all $x \in X(v)$ we have

$$\begin{split} \langle c, x \rangle &\geq \langle c, x \rangle + \langle u^*, b + v - A x \rangle = \langle b, u^* \rangle + \langle u^*, v \rangle + \\ &+ \langle c - u^* A, x \rangle \geq \langle b, u^* \rangle + \langle u^*, v \rangle = f^* + \langle u^*, v \rangle \,. \end{split}$$

Then it follows for each $v \in \mathbb{R}^s$

$$F(v) \ge f^* + \langle u^*, v \rangle.$$

Taking into account that it is $f^* = F(\mathbb{O})$, (12) follows.

On the other hand let $u^* \in \partial F(\mathbb{O})$, so that (12) is satisfied. By substituting into (12) v by the unit vectors e_i and taking into account that it is $F(e_i) \leq F(\mathbb{O})$, we have $u_i^* \leq 0$. Thus it is $u^* \leq \mathbb{O}$.

Now, from (12) we have

$$F(v) + \langle -u^*, v \rangle \ge F(\mathbb{O}) \qquad \forall \ v \in \mathbb{R}^s.$$

From the lemma at section 1°, $\varphi(-u^*) \ge F(\mathbb{O})$. The relations

$$\varphi^* \ge \varphi(-u^*) \ge F(\mathbb{O}) = f^* \ge \varphi^*$$

ensure that the vector $-u^*$ solves problem (11). In this case, as previously observed, u^* solves (10) and the proof is complete.

The following result (see [4]) is related to previous theorem.

THEOREM 8. If u is a feasible solution of the dual problem (10), then $u \in \partial_{\varepsilon} F(\mathbb{O})$, where $\varepsilon = f^* - \langle b, u \rangle$.

Proof. We must prove that

$$F(v) - F(\mathbb{O}) \ge \langle u, v \rangle - \varepsilon \qquad \forall v \in \mathbb{R}^s.$$

The property is obvious for $X(v) = \emptyset$. Now let $X(v) \neq \emptyset$. For each $x \in X(v)$ we have

$$\begin{split} \langle c, x \rangle &\geq \langle c, x \rangle + \langle u, b + v - A x \rangle = \langle b, u \rangle + \langle u, v \rangle + \\ &+ \langle c - uA, x \rangle \geq f^* - \varepsilon + \langle u, v \rangle = F(\mathbb{O}) + \langle u, v \rangle - \varepsilon . \end{split}$$

The property follows by considering that the above relation holds for all $x \in X(v)$.

 8° . A recent survey on the sensitivity theory in optimization is in [5].

REFERENCES

- Lazarev A. V. On duality relationship in Mathematical Programming, Seminar "DHA & CAGD", Selected Reports, May 17, 2008, (in Russian). (http://dha.spb.ru/reps08.shtml#0517).
- Lazarev A. V. Necessary conditions for global optimality, Seminar "DHA & CAGD", Selected Reports, September 9, 2008, (in Russian). (http://dha.spb.ru/reps08.shtml#0909).
- Shapiro J. Mathematical Programming: Structures and Algorithms., J. Wiley & Sons, 1979.
- De Leone R., Gaudioso M., Monaco M. F. Nonsmooth optimization methods for parallel decomposition of multicommodity flow problems, Annals of Operation Research, 1993, Vol. 44, pp. 299–311.
- 5. Izmailov A. F. Sensitivity Analysis, Fizmatlit, Moscow, 2006, (in Russian).