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Consider the problem of the best approximate separation of two finite sets in
the linear case. This problem is reduced to the problem of nonsmooth optimization,
analyzing which we use all power of the linear programming theory.

Ideologically we follow [1].

1
◦. Suppose we have two finite sets in R

n

A = {ai}
m
i=1 and B = {bj}

k
j=1.

The sets A and B are called strictly separable, if there exist a nonzero vector w ∈ R
n

and a real number γ, such that

〈w, ai〉 < γ for all i ∈ 1 : m, (1)

〈w, bj〉 > γ for all j ∈ 1 : k. (2)

If conditions (1) and (2) are satisfied, it is also said that the hyperplane H defined
by the equation 〈w, x〉 = γ strictly separates the set A from the set B.

2
◦. We introduce the function

f(g) =
1

m

m
∑

i=1

[

〈w, ai〉 − γ + c
]

+
+

1

k

k
∑

j=1

[

−〈w, bj〉+ γ + c
]

+
, (3)

where g = (w, γ), c > 0 is a parameter, and [u]+ = max{0, u}. It is clear that
f(g) ≥ 0 for all g.

THEOREM 1. The sets A and B are strictly separable if and only if there exists

a vector g∗ such that f(g∗) = 0.
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2

P r o o f. Let f(g∗) = 0 for some vector g∗ = (w∗, γ∗). First, we show that w∗ 6= O.
Otherwise

f(g∗) = (−γ∗ + c)+ + (γ∗ + c)+ =











−γ∗ + c at γ∗ ≤ −c,

2c at γ∗ ∈ [−c, c],

γ∗ + c at γ∗ ≥ c.

Hence it follows that f(g∗) ≥ 2c. It contradicts the condition f(g∗) = 0.
Furthermore, the condition f(g∗) = 0 guarantees that all the terms

[

〈w∗, ai〉 − γ∗ + c
]

+
and

[

−〈w∗, bj〉+ γ∗ + c
]

+

equal to zero. This is possible only when

〈w∗, ai〉 − γ∗ + c ≤ 0 for all i ∈ 1 : m, (4)

−〈w∗, bj〉+ γ∗ + c ≤ 0 for all j ∈ 1 : k. (5)

It remains to note that (4) and (5) provide that the conditions of strict separa-
tion (1) and (2) are satisfied with w = w∗ and γ = γ∗.

Let us prove the converse. Let the conditions (1) and (2) are satisfied. Denote

d := min
j∈1:k

〈w, bj〉 − max
i∈1:m

〈w, ai〉 > 0, (6)

w∗ = (2c
d
)w, γ∗ =

1

2

[

min
j∈1:k

〈w∗, bj〉+ max
i∈1:m

〈w∗, ai〉
]

.

According to (6) and the definition of w∗

min
j∈1:k

〈w∗, bj〉 − max
i∈1:m

〈w∗, ai〉 = 2c.

We have

max
i∈1:m

〈w∗, ai〉 = 2γ∗ − min
j∈1:k

〈w∗, bj〉 = 2γ∗ − 2c− max
i∈1:m

〈w∗, ai〉,

so
max
i∈1:m

〈w∗, ai〉 = γ∗ − c. (7)

Similarly

min
j∈1:k

〈w∗, bj〉 = 2γ∗ − max
i∈1:m

〈w∗, ai〉 = 2γ∗ + 2c− min
j∈1:k

〈w∗, bj〉,

so
min
j∈1:k

〈w∗, bj〉 = γ∗ + c. (8)

Let g∗ = (w∗, γ∗). By (7) and (8) we get f(g∗) = 0.
The theorem is proved.
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3
◦. In the proof of the theorem 1 we described a transformation of the vector

g = (w, γ) that generated a strictly separating hyperplane H =
{

x | 〈w, x〉 = γ
}

into the vector g∗ = (w∗, γ∗) with the property f(g∗) = 0. The point is, given the
vector g, the value f(g) can be positive (it depends on the parameter c).

EXAMPLE 1. Consider two sets A and B on the plane R
2, each containing

a single point a = (0, 0) and b = (0, 2) respectively. The vector g = (w, γ) with
components w = (0, 1) and γ ∈ (0, 2) generates a line x2 = γ that strictly separates
the point a from the point b (see figure 1).

b

γ

2

a0 x1

x2

Figure 1

At the same time

f(g) = [−γ + c]+ + [−2 + γ + c]+.

The figure 2 shows a plot of f(g) as a function of γ for c ∈ (0, 1].

0

c

c 2− c 2 γ

f

Figure 2

We see that f(g) = 0 for γ ∈ [c, 2− c]. At γ ∈ (0, c)∪ (2− c, 2) the line x2 = γ
still strictly separates the point a from the point b, but f(g) > 0.
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4
◦. Consider an extremal problem

f(g) → min, (9)

where f(g) is the function of the form (3). This problem is equivalent to a linear
programming problem

1

m

m
∑

i=1

yi +
1

k

k
∑

j=1

zj → min, (10)

−〈w, ai〉+ γ + yi ≥ c, i ∈ 1 : m;

〈w, bj〉 − γ + zj ≥ c, j ∈ 1 : k;

yi ≥ 0, i ∈ 1 : m; zj ≥ 0, j ∈ 1 : k.

The set of plans of the problem (10) is nonempty (a vector with components
w = O, γ = 0, yi ≡ c, zj ≡ c is a plan) and the objective function is bounded below
by zero. So the problem (10) has a solution. By the equivalence, the problem (9)
has a solution too, and the minimum values of the objective functions of these
problems are equal. We denote this common value by µ. We also note that if
(

w∗, γ∗, {u
∗

i }, {v
∗

j}
)

is the solution of (10) then g∗ = {w∗, γ∗} is the solution of (9).

5
◦. When µ = 0 we get f(g∗) = 0. By the theorem 1 the vector g∗ = (w∗, γ∗)

generates a hyperplane H =
{

x | 〈w∗, x〉 = γ∗
}

that strictly separates the set A
from the set B.

The vector g∗ can be improved by using the non-uniqueness of the solution of
the problem (9). Let

w0 = w∗/‖w∗‖,

γ0 =
1

2

[

min
j∈1:k

〈w0, bj〉+ max
i∈1:m

〈w0, ai〉
]

,

c0 =
1

2

[

min
j∈1:k

〈w0, bj〉 − max
i∈1:m

〈w0, ai〉
]

,

g0 = (w0, γ0).

Then for all i ∈ 1 : m

〈w0, ai〉 − γ0 + c0 = 〈w0, ai〉 − max
i∈1:m

〈w0, ai〉 ≤ 0,

and for all j ∈ 1 : k

−〈w0, bj〉+ γ0 + c0 = −〈w0, bj〉+ min
j∈1:k

〈w0, bj〉 ≤ 0.

This means that f(g0) = 0 for c = c0. The hyperplane H0 =
{

x | 〈w0, x〉 = γ0
}

strictly separates the set A from the set B, and the width of the dividing strip is
equal to 2c0.
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6
◦. As noted in section 4◦, the problem (9) always has a solution. When µ > 0,

according to the theorem 1, the sets A and B can not be strictly separated. In this
case we say that the hyperplane H∗ =

{

x | 〈w∗, x〉 = γ∗
}

generated by the solution
g∗ = (w∗, γ∗) of the problem (9) is the best hyperplane approximately separating

the set A from the set B (for a given value of the parameter c).
However, there is a catch: there is no guarantee that the component w∗ of the

vector g∗ is nonzero. Let us examine this situation.

THEOREM 2. The problem (9) has a solution g∗ = (w∗, γ∗) with w∗ = O if and

only if the following condition holds:

1

m

m
∑

i=1

ai =
1

k

k
∑

j=1

bj. (11)

P r o o f. N e c e s s i t y. When w∗ = O, it is easy to calculate the extreme value of
the objective function of the linear programming problem (10). Indeed,

µ = f(g∗) = min
γ

{

[−γ + c]+ + [γ + c]+
}

= 2c.

Of the same extreme value is the linear programming problem that is dual to (10).
By the solvability of the dual problem, the following system is consistent:

c

(

m
∑

i=1

ui +
k
∑

j=1

vj

)

= 2c, (12)

−
m
∑

i=1

uiai +
k
∑

j=1

vjbj = O, (13)

m
∑

i=1

ui −

k
∑

j=1

vj = 0, (14)

0 ≤ ui ≤
1

m
, i ∈ 1 : m; 0 ≤ vj ≤

1

k
, j ∈ 1 : k. (15)

From (12) and (14) it follows that

m
∑

i=1

ui = 1,
k
∑

j=1

vj = 1.

Taking into account (15), we conclude that all ui are equal to 1

m
and all vj are

equal to 1

k
. Now (13) is equivalent to (11).

S u f f i c i e n c y. We write the problem dual to (10):

c

(

m
∑

i=1

ui +
k
∑

j=1

vj

)

→ max
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subject to constraints (13)–(15). By (11) the set of ui ≡
1

m
, vj ≡ 1

k
is a plan of

this problem. The objective function value is equal to 2c.
At the same time, the set

w = O, γ = 0, yi ≡ c, zj ≡ c (16)

is a plan of the problem (10) and the objective function value is also equal to 2c.
Hence it follows that the plan (16) of the problem (10) with w = O is optimal.

The theorem is proved.

EXAMPLE 2. Consider two sets on the plane R
2:

A =
{

(0, 0), (1, 1)
}

, B =
{

(1, 0), (0, 1)
}

(see figure 3). In this case the condition (11) holds. By the theorem 2, the
problem (9) has a solution g∗ = (w∗, γ∗) with w∗ = O. In this case µ = 2c.

We will show that the problem (9) has another solution g0 = (w0, γ0) with
w0 6= O.

0

1

1

2

1 x1

x2

Figure 3

By (3)

f(g) = 1

2

{

[−γ + c]+ + [w1 +w2 − γ + c]+
}

+ 1

2

{

[−w1 + γ + c]+ + [−w2 + γ + c]+
}

.

Here w = (w1, w2). Let

w0 = (c, c), γ0 = c, g0 = (w0, γ0).

Then f(g0) = 2c. So, a minimum of the function f(g) is attained on the vector g0.
The hyperplane H0 = {x | x1 + x2 = 1} is the best hyperplane approximately
separating the set A from the set B.

Of the same property are the vector g1 = (w1, γ1) with w1 = (0, c) and γ1 =
c
2

and the hyperplane H1 = {x | x2 =
1

2
} (see figure 3).
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7
◦. The peculiarity noted in example 2 has a general nature.

THEOREM 3. When µ > 0, the problem (9) has a solution g0 = (w0, γ0) with

w0 6= O.

P r o o f. Assume that the solution g∗ = (w∗, γ∗) of the problem (9) has zero com-
ponent w∗. We will construct another solution g0 = (w0, γ0) with w0 6= O.

By the theorem 2 the relation (11) holds and µ = 2c. Take any nonzero
vector h ∈ R

n and consider a linear programming problem

〈h,w〉 → min, (17)

−
1

m

m
∑

i=1

yi −
1

k

k
∑

j=1

zj = −2c;

−〈w, ai〉+ γ + yi ≥ c, i ∈ 1 : m;

〈w, bj〉 − γ + zj ≥ c, j ∈ 1 : k;

yi ≥ 0, i ∈ 1 : m; zj ≥ 0, j ∈ 1 : k.

The vector (16) satisfies the constrains of the problem (17), so it is its plan. We
will show that this plan can not be optimal.

Indeed, if the plan (16) is optimal then the problem dual to (17) must have a
plan with the same (i. e. zero) value of the objective function. Thus, the following
system must be consistent:

c

(

m
∑

i=1

ui +
k
∑

j=1

vj − 2ζ

)

= 0, (18)

−

m
∑

i=1

uiai +
k
∑

j=1

vjbj = h, (19)

m
∑

i=1

ui −
k
∑

j=1

vj = 0, (20)

0 ≤ ui ≤
1

m
ζ, i ∈ 1 : m; 0 ≤ vj ≤

1

k
ζ, j ∈ 1 : k. (21)

However, it can be shown that this system is inconsistent.
From (18) and (20) it follows that

m
∑

i=1

ui = ζ,
k
∑

j=1

vj = ζ.
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By (21) we obtain ui ≡
1

m
ζ, vj ≡

1

k
ζ. Equality (19) takes the form

ζ

(

−
1

m

m
∑

i=1

ai +
1

k

k
∑

j=1

bj

)

= h.

But this contradicts to (11) (recall that h 6= O).
It is ascertained that the plan (16) of the problem (17) with a zero value of the

objective function is not optimal. Hence, there exist a plan
(

w0, γ0, {u
0

i }, {v
0

j}
)

(22)

with a negative value of the objective function. Such a plan must be with w0 6= O.
Now we note that the plan (22) of the problem (17) satisfies the constraints

of (10) and on it the objective function of the problem (10) takes the smallest pos-
sible value equal to 2c (recall that µ = 2c). By the equivalence of the problems (9)
and (10) the vector g0 = (w0, γ0) with w0 6= O is a solution of the problem (9).

The theorem is proved.

R e m a r k. As a non-zero vector h we can take, for example, any non-zero difference
bj0 −ai0 . In this case, a set of plans of the problem dual to the problem (17), which
is defined by (19)– (21), will not be empty. Together with the nonempty set of
plans of the problem (17) this guarantees the existence of the optimal plan of the
problem (17).

8
◦. When µ > 0 the solution g0 = (w0, γ0) of the problem (9) with w0 6= O can

be reduced to the canonical form. As in section 5◦ we set

w1 = w0/‖w0‖,

γ1 =
1

2

[

min
j∈1:k

〈w1, bj〉+ max
i∈1:m

〈w1, ai〉
]

,

c1 =
1

2

[

min
j∈1:k

〈w1, bj〉 − max
i∈1:m

〈w1, ai〉
]

,

g1 = (w1, γ1).

In this case c1 ≤ 0. When c1 = 0 the hyperplane H1 =
{

x | 〈w1, x〉 = γ1
}

non-
strictly separates the set A from the set B. When c1 < 0 the same hyperplane H1

is the best approximately separating the set A from the set B.
By definition of w1, γ1, c1 we have

〈w1, ai〉 − γ1 + c1 ≤ 0, i ∈ 1 : m

−〈w1, bj〉+ γ1 + c1 ≤ 0, j ∈ 1 : k.

When c1 < 0 these inequalities define a “mixed strip”

c1 ≤ 〈w1, x〉 − γ1 ≤ −c1,

which contains both the points of the set A and the points of the set B. The width
of the mixed strip is equal to 2|c1|.
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9
◦. The example of the best approximate separation of two sets is illustrated

on the figure 4.

0 x1

x2

Figure 4

REFERENCES

1. Bennett K. P., Mangassarian O. L. Robust linear programming discrimination

of two linearly inseparable sets // Optimization Methods and Software. 1992.
Vol. 1. P. 23–34.


	1°. 
	2°. 
	3°. 
	4°. 
	5°. 
	6°. 
	7°. 
	8°. 
	9°. 
	REFERENCES

