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In this paper we investigate the relationship bethween the Shapiro polynomials
and the Reed-Muller codes given in the paper [1].

1
◦. The Shapiro polynomials are defined recursively by

P0(x) ≡ 1, Q0(x) ≡ 1

and when m = 0, 1, . . .,

Pm+1 = Pm(x) + x2mQm(x), (1)

Qm+1 = Pm(x)− x2mQm(x). (2)

For example,

P1(x) = 1 + x, Q1(x) = 1− x,

P2(x) = 1 + x+ x2 − x3, Q2(x) = 1 + x− x2 + x3,

P3(x) = 1 + x+ x2 − x3 + Q3(x) = 1 + x+ x2 − x3 −

+ x4 + x5 − x6 + x7, − x4 − x5 + x6 − x7.

It is clear that the degree of polynomials Pm(x) and Qm(x) is 2m − 1.

LEMMA 1. The following formulas hold

Pm+1(x) = Pm(x
2) + xPm(−x2), m = 0, 1, . . . ; (3)

Qm+1(x) = Qm(x
2) + xQm(−x2), m = 1, 2, . . . . (4)
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P r o o f. The formula (3) for m = 0, 1, 2 and formula (4) for m = 1, 2 can be
checked directly. We now make the induction step from m to m+ 1, for m ≥ 2.

We rewrite the relations (1) and (2), replacing m by m−1 and x by x2. Taking
into account that (x2)2

m−1

= x2m , we have

Pm(x
2) = Pm−1(x

2) + x2mQm−1(x
2),

Qm(x
2) = Pm−1(x

2)− x2mQm−1(x
2).

(5)

Now we replace m by m− 1 and x by −x2 in (1) and (2). Given the equality
(−x2)2

m−1

= x2m , which is true for m ≥ 2, we get the relations

Pm(−x2) = Pm−1(−x2) + x2mQm−1(−x2),

Qm(−x2) = Pm−1(−x2)− x2mQm−1(−x2).
(6)

Using the induction hypothesis and the formulas (1), (5), (6) we get

Pm+1(x) = Pm(x) + x2mQm(x) = Pm−1(x
2) + xPm−1(−x2) +

+ x2m [Qm−1(x
2) + xQm−1(−x2)] = Pm−1(x

2) + x2mQm−1(x
2) +

+ x[Pm−1(−x2) + x2mQm−1(−x2)] = Pm(x
2) + xPm(−x2).

The relation (3) is thus established.
The formula (4) is verified in a similar manner.

2
◦. Set n = 2m. By definition, the first n coefficients of the polynomial Pm+1(x)

are identical with those of Pm(x). It follows then that these coefficients do not
depend on m.

Let

Pm(x) =
n−1
∑

k=0

ak x
k.

LEMMA 2. The following recursive relations of the coefficients {ak} hold:

a0 = 1

and for k ∈ 0 : 2m−1 − 1, m = 1, 2, . . .

a2k = ak, a2k+1 = (−1)kak. (7)

P r o o f. According to (3), for m ≥ 1 we have

Pm(x) = Pm−1(x
2) + xPm−1(−x2) =

=
2m−1

−1
∑

k=0

ak x
2k +

2m−1
−1

∑

k=0

(−1)kak x
2k+1.

The needed relations immediately follow from this formula.
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The following table shows the results of the sequential computation of the
Shapiro polynomials’ coefficients, by formula (7).

Table
m Pm(x) polynomial’s coefficients
0 1
1 1 1
2 1 1 1 −1
3 1 1 1 −1 1 1 −1 1

3
◦. An explicit formula for the coefficents ak of the polynomial Pm(x) can be

derived. In order to do this, we associate with the index k its binary expansion

k = (km−1, km−2, . . . , k0)2, kα ∈ {0, 1}.

THEOREM 1. For k ∈ 0 : 2m − 1, m ≥ 2, the following formula holds

ak = (−1)
∑m−1

α=1
kα−1kα . (8)

P r o o f. For m = 2, when k = (k1, k0)2, the formula (8) is verified directly. We
proceed by induction from m to m+ 1.

Let k ∈ 0 : 2m+1 − 1. We represent k in the form k = 2k′ + σ, where k′ ∈ 0 :
2m − 1 and σ ∈ {0, 1}. We can write k′ = (k′

m−1, . . . , k
′

0)2. Then,

k = (k′

m−1, . . . , k
′

0, σ)2,

that is, kα = k′

α−1 for α ∈ 1 : m and k0 = σ.
According to (7)

a2k′+σ = (−1)k
′σak′ = (−1)k

′

0
σak′ .

We use the induction hypothesis, whereby

ak′ = (−1)
∑m−1

α=1
k′α−1

k′α .

We find that

ak = a2k′+σ = (−1)k
′

0
σ(−1)

∑m−1

α=1
k′α−1

k′α =

= (−1)k1k0(−1)
∑m−1

α=1
kαkα+1 = (−1)

∑m
α=1

kα−1kα .

The theorem is proved.



4

We introduce the function

φ(k) =
m−1
∑

α=1

kα−1kα =

= k0k1 + k1k2 + . . .+ km−2km−1, k ∈ 0 : n− 1.

The value of this function φ(k) for k fixed equals the number of times the block
[

1 1
]

appears in the binary expansion of the index k. We now can rewrite for-
mula (8) as

ak = (−1)φ(k), k ∈ 0 : n− 1.

4
◦. Let us note one fundamental property of the Shapiro polynomials.

THEOREM 2. For all m = 0, 1, . . . and all complex z, such that |z| = 1, the

following equality holds

|Pm(z)|
2 + |Qm(z)|

2 = 2m+1.

This equality can be easily proven by induction, using the formulas (1), (2)
and the elementary property of the complex numbers

|z1 + z2|
2 + |z1 − z2|

2 = 2
(

|z1|
2 + |z2|

2
)

.

5
◦. We now turn to Reed-Muller codes (see, for example, [2, p. 58–62]). Let r

and m be fixed natural numbers, r < m, and let n = 2m. We introduce a block
encoding matrix of the form

G =









G0

G1

. . .

Gr









.

Here, G0 is a row vector of size n, consisting of ones,

G0 =
[

1 1 . . . 1
]

= [g0];

G1 = G1[1 : m, 0 : n−1] is a matrix, the columns of which consist of the coefficients
of the numbers 0, 1, . . . , n − 1, in their binary expansion starting with the most
significant bit. For example, for m = 4

G1 =









0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1









=









g1
g2
g3
g4









.
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To form the rows of the rest of the blocks Gs, s = 2, . . . , r, we take all possible
component-wise products of s rows of the matrix G1. The combinations of s rows
are taken in lexicographic order. For example, let m = 4

G2 =

















g1g2
g1g3
g1g4
g2g3
g2g4
g3g4

















, G3 =









g1g2g3
g1g2g4
g1g3g4
g2g3g4









.

The size of the block Gs is Cs
m × 2m. The matrix G is of size

(1 + C1
m + C2

m + . . . Cr
m)× 2m.

We consider the rows of the matrix as elements in Z
n
2 , where bitwise addition

modulo 2 and bitwise multiplication are introduced.
Let i be the information word. All its components are equal to zero or one,

and its length equals the number of rows of matrix G. The Reed-Muller codeword
is defined as

c = i G. (9)

This means, that the codeword c is a linear combination of the rows of matrix G.
The coefficients of this linear combination are the components of the information
word i (equal to zero or one). The linear combination is evaluated by the rules
introduced in Z

n
2 .

For example, let m = 3, r = 1. In that case,

G =









1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1









.

Let the information word be i =
[

1 1 1 0
]

. We obtain the corresponding
codeword c =

[

1 1 0 0 0 0 1 1
]

.
The set of codewords c of the form (9) for different i is called the Reed-Muller

code and is denoted as RM(r,m).

6
◦. We now study the properties of the matrix G1 in more detail. Let j ∈ 0 :

n− 1, j = (jm−1, . . . , j0)2. By definition,

G1[k, j] = jm−k, k ∈ 1 : m. (10)

Recall the definition of the Rademacher functions

rk(j) = (−1)jm−k , j ∈ 0 : n− 1, k ∈ 1 : m.
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According to (10) for k ∈ 1 : m

(−1)G1[k,j] = rk(j), j ∈ 0 : n− 1. (11)

We denote by (−1)G1 a matrix with elements (−1)G1[k,j]. Then the property (11)
can be formulated as: the k-th row of the matrix (−1)G1 coincides with the values

of the Rademacher functions rk.

Now we introduce the matrix D = G⊤

1 G1. The rows of matrix D are linear
combinations in Z

n
2 of the rows of matrix G1. We show that

(−1)D = H,

where H is Hadamard matrix. [ Recall (see, for example, [3, p. 54]) that Hadamard
matrix on the indexes l = (lm−1, . . . , l0)2, j = (jm−1, . . . , j0)2 is defined as

H[l, j] = (−1)
∑m−1

α=0
lαjα , l, j ∈ 0 : n− 1.]

According to (10)

(−1)D[l,j] = (−1)〈
∑m

k=1
G1[k,l]G1[k,j]〉

2 =

= (−1)
∑m

k=1
lm−kjm−k = (−1)

∑m−1

α=0
lαjα = H[l, j].

7
◦. Consider the following codeword in RM(2,m) for m ≥ 3

s =
m−1
∑

k=1

gkgk+1 = [s0 s1 . . . sn−1]. (12)

For example, for m = 3 we have s =
[

0 0 0 1 0 0 1 0
]

. We introduce the
vector

(−1)s =
[

1 1 1 −1 1 1 −1 1
]

and write the corresponding generating function

p(x) = 1 + x+ x2 − x3 + x4 + x5 − x6 + x7.

It is clear, that p(x) is the Shapiro polynomial for m = 3, p(x) = P3(x).
A similar fact holds in general case.

THEOREM 3. The following formula holds for the coefficients of the Shapiro

polynomials Pm(x) for m ≥ 3

aj = (−1)sj , j ∈ 0 : n− 1,

where sj are the components of the codeword s in the form (12).
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P r o o f. According to (10)

sj =

〈m−1
∑

k=1

G1[k, j]G1[k + 1, j]

〉

2

=

〈m−1
∑

k=1

jm−kjm−k−1

〉

2

=

=

〈m−1
∑

α=1

jα−1jα

〉

2

.

Finally, taking into account (8), we obtain

(−1)sj = (−1)
∑m−1

α=1
jα−1jα = aj.

The theorem is proved.

REFERENCES

1. An M., Byrnes J., Moran W. , Saffari B. , Shapiro H. S. and Tolimieri R. PONS,

Reed-Muller codes, and group algebras. NATO Advanced Study Institute: Com-
putational Noncommutative Algebra and Applications. Tuscany, Italy. July
2003. P. 155–197

2. Blahut R. E. Theory and practice of error control codes, Addison-Wesley Pub.
Co., 1983. 500 p.

3. Malozemov V. N., Masharskiy S. M. Foundations of Discrete Harmonic Analy-

sis. Part 2. SPb.: NIIMM SPbSU, 2003. 100 p.


	1°. 
	2°. 
	3°. 
	4°. 
	5°. 
	6°. 
	7°. 
	REFERENCES

