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In this paper we investigate the relationship bethween the Shapiro polynomials
and the Reed-Muller codes given in the paper [1].

1°. The Shapiro polynomials are defined recursively by

Pyx)=1, Qolx)=1

and when m =0,1, ...,

Pm+1 = Pm(l') —|—l’2QO(l’), (1)
Q1 = Pu(r) — $2QO($)' (2)
For example,
Pia) =1+, Qua) =11,
Py(z)=1+az+2* — 2% Qao(z) =142z —2° +2°,
Py(z) =1+x+2* —2°+ Qs(z) =142+ 2> —2° -
+x4+x5—x6+x7, —at =2 a8 — 2"

It is clear that the degree of polynomials P, (x) and @Q,,(z) is 2™ — 1.
LEMMA 1. The following formulas hold
Pri1(z) = Pp(2®) + 2 Pn(—2%), m=0,1,.. ; (3)
Qm-l—l(m) = Qm((l;z) +me<_x2>a m=12.... (4)
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Proof. The formula (3) for m = 0,1,2 and formula (4) for m = 1,2 can be
checked directly. We now make the induction step from m to m + 1, for m > 2.
We rewrite the relations (1) and (2), replacing m by m—1 and x by 2. Taking

into account that (22)2" " = 22", we have
(%) + 27" Qo (27),

x

P (a*) = Py,

Qum(2?) = Pp1(2?) — 2% Qpu_1(2?).
Now we replace m by m — 1 and x by —z? in (1) and (2). Given the equality

(—22)2"" = 22" which is true for m > 2, we get the relations

Pyp(=2*) = Pyoi(=2%) + 27" Qo (—2%),
Qm(=2%) = Pp_1(—=2?) — 2% Q1 (—2?).
Using the induction hypothesis and the formulas (1), (5), (6) we get
Ppi1(z) = P(z) + 2% Qu(z) = Py (2?) + 2P 1 (—27) +
+ 27 Q1 (2%) + 2 Qo (=2?)] = P (27) + 277 Qi (27) +
+ 2[ Pt (=) + 2% Q_1(—2%)] = Pn(2?) + 2P, (—2?).

The relation (3) is thus established.
The formula (4) is verified in a similar manner. O

(5)

(6)

2°. Set n = 2™. By definition, the first n coefficients of the polynomial P, (x)
are identical with those of P, (z). It follows then that these coefficients do not

depend on m.
Let

n—1

P, (x) = Z ay, "

k=0
LEMMA 2. The following recursive relations of the coefficients {ay} hold:

ag =1
and forke0:2m1 —1, m=1,2,...
g = g, agppr = (—1)"ay, (7)
Proof. According to (3), for m > 1 we have
Po(7) = Pp1(2%) + 2Py (—2%) =

2m—171 2m—171

- Z ap 7% + Z (—1)*ay 21
k=0 k=0

The needed relations immediately follow from this formula. O



The following table shows the results of the sequential computation of the
Shapiro polynomials’ coefficients, by formula (7).

Table
m | Pp(z) polynomial’s coefficients
01
111 1
2|1 1 1 -1
311

11 -1 1 1 -1 1

3°. An explicit formula for the coefficents ay of the polynomial P,,(x) can be
derived. In order to do this, we associate with the index k its binary expansion

k= (km-1,km—2,....ko)2, ko€ {0,1}.
THEOREM 1. For ke 0:2™ —1, m > 2, the following formula holds
ap = (_1)227:_11 kaflka. (8)

Proof. For m = 2, when k = (ky, ko)2, the formula (8) is verified directly. We
proceed by induction from m to m + 1.
Let k € 0: 2™ — 1. We represent k in the form k& = 2k’ + o, where &’ € 0 :

2™ — 1 and o € {0,1}. We can write k' = (k/,_;,...,k{)2. Then,
k= (k:nfh ceey ké,O’)Q,

that is, k, = k/,_, for a € 1 : m and ky = o.
According to (7)

Aok 4o = (—1)k/”ak/ = (—1)k6”ak/.
We use the induction hypothesis, whereby
ap = (_1)22’:_11 ko—1ka
We find that
A = Qoo = (—1)F07 (—1) X Faika =

= (_1)k1ko(_1) o kakay1 (_1)2707:1 ka—1ka

The theorem is proved. O



We introduce the function

m—1
$(k) =Y ka—ika =
a=1
:kok’l—i—qu’Q—i—...—l—k‘m_gk‘m_l, keO:n—1.

The value of this function ¢(k) for k fixed equals the number of times the block
[1 1} appears in the binary expansion of the index k. We now can rewrite for-
mula (8) as

ar= (1% ke0:n-1.

4°. Let us note one fundamental property of the Shapiro polynomials.

THEOREM 2. For all m = 0,1,... and all complezx z, such that |z| = 1, the
following equality holds

1P (2)* + |Qum(2) > = 27T

This equality can be easily proven by induction, using the formulas (1), (2)
and the elementary property of the complex numbers

|Zl + 22|2 + |Zl — Zg|2 = 2(|Zl‘2 + |ZQ|2).

5°. We now turn to Reed-Muller codes (see, for example, [2, p. 58-62]). Let r
and m be fixed natural numbers, » < m, and let n = 2™. We introduce a block
encoding matrix of the form
Go
G
G=|"

G,
Here, Gy is a row vector of size n, consisting of ones,

Go=[1 1 ... 1] =[g);

G1 = G1[1 : m,0 : n—1] is a matrix, the columns of which consist of the coefficients
of the numbers 0,1,...,n — 1, in their binary expansion starting with the most
significant bit. For example, for m = 4

0000O0OOODOOGOT1T1T111111 o
G _|00001 1110000111 1]_ /g
'“loo0o1 100110071100 11]| | gs

01 0101010101010 1 0



To form the rows of the rest of the blocks G, s = 2,...,r, we take all possible
component-wise products of s rows of the matrix G;. The combinations of s rows
are taken in lexicographic order. For example, let m =4

_9192_

g193 919293
Gy = 9194 Gl = 919294 |

9293 919394

9294 929394

| 9394

The size of the block G is C;, x 2™. The matrix G is of size
(1+ChL+Ch+...Ch) x 2™,

We consider the rows of the matrix as elements in Z7, where bitwise addition
modulo 2 and bitwise multiplication are introduced.

Let i be the information word. All its components are equal to zero or one,
and its length equals the number of rows of matrix G. The Reed-Muller codeword
is defined as

c=1iG. (9)
This means, that the codeword c is a linear combination of the rows of matrix G.
The coefficients of this linear combination are the components of the information
word i (equal to zero or one). The linear combination is evaluated by the rules
introduced in Zj.

For example, let m = 3, » = 1. In that case,

11111111
G:OO()Ollll
001100171
01 010101

Let the information word be i = [1 11 0}. We obtain the corresponding

codeword ¢ = [1 1 00001 1].
The set of codewords ¢ of the form (9) for different ¢ is called the Reed-Muller

code and is denoted as RM (r,m).

6°. We now study the properties of the matrix G; in more detail. Let j € 0 :
n—1,75= (Jm-1,---,J0)2- By definition,

Gilk,j] = jm-k, k€1l:m. (10)
Recall the definition of the Rademacher functions

me(j) = (_1)jm_k, jeld:n—1, kel:m.



According to (10) for k€ 1:m
(—D)I = (), j€O0:n—1. (11)

We denote by (—1) a matrix with elements (—1)1/9]. Then the property (11)
can be formulated as: the k-th row of the matriz (—1)°" coincides with the values
of the Rademacher functions ry.

Now we introduce the matrix D = G| G;. The rows of matrix D are linear
combinations in Z3 of the rows of matrix G;. We show that

(~)P =8,

where H is Hadamard matrix. | Recall (see, for example, |3, p. 54|) that Hadamard
matrix on the indexes | = (l,—1,...,00)2,7 = (Jm—1,---,J0)2 is defined as

H[l,j] = (-1)Ze= ledo | j€0:n—1]
According to (10)
(—1)Pldl — (_1)(2’,:;1 Gilk NG kg), _
= (—1) %k bnosdmek = (1) ldo = F], 5],

7°. Consider the following codeword in RM (2, m) for m > 3

m—1
§= Z GkGk+1 = [S051 - - Sn—1]. (12)
k=1

For example, for m = 3 we have s = [O 001001 0}. We introduce the
vector
(-1)=[111 -111 -1 1]

and write the corresponding generating function
px)=1+z+2* -2+ +2° 2%+ 27

It is clear, that p(z) is the Shapiro polynomial for m = 3, p(z) = P3(x).
A similar fact holds in general case.

THEOREM 3. The following formula holds for the coefficients of the Shapiro
polynomials P, (x) for m >3

aj= (-1, je0:n—-1,

where s; are the components of the codeword s in the form (12).



Proof. According to (10)

m—1

m—1
s; = <Z Gilk, j]G1[k + 1>j]> = <ijkjmk1> =

k=1 2 k=1 2
m—1

= <Zja1ja> .
a=1 2

Finally, taking into account (8), we obtain
(_1)5]' — (_1)221:_11ja71jo¢ — aj'
The theorem is proved. [l
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