GENERALIZED SHAPIRO POLYNOMIALS AND PONS MATRICES*

I. S. Stojanoska

irena.stoyanoska@gmail.com

19 May 2012

 $1^\circ.$ Generalized Shapiro polynomials are given in the work [1] by the following recursive relations

$$P_{m+1,4j}(x) = P_{m,2j}(x) + x^{2^m} P_{m,2j+1}(x),$$

$$P_{m+1,4j+1}(x) = P_{m,2j}(x) - x^{2^m} P_{m,2j+1}(x),$$

$$P_{m+1,4j+2}(x) = P_{m,2j+1}(x) + x^{2^m} P_{m,2j}(x),$$

$$P_{m+1,4j+3}(x) = -P_{m,2j+1}(x) + x^{2^m} P_{m,2j}(x),$$

$$m = 1, 2, \dots; \quad j \in 0: 2^{m-1} - 1,$$
(1)

and the initial conditions

$$P_{1,0}(x) = 1 + x, \quad P_{1,1}(x) = 1 - x.$$

In this paper we investigate some of the properties of such polynomials.

2°. From (1), in particular, it follows that for m = 1 (and j = 0)

$$P_{2,0}(x) = 1 + x + x^{2} - x^{3},$$

$$P_{2,1}(x) = 1 + x - x^{2} + x^{3},$$

$$P_{2,2}(x) = 1 - x + x^{2} + x^{3},$$

$$P_{2,3}(x) = -1 + x + x^{2} + x^{3}.$$
(2)

It is clear that the polynomials $P_{m,k}(x)$ are defined for $k \in 0: 2^m - 1$, their degree is $2^m - 1$ and all their coefficients are equal to ± 1 . These polynomials are defined

^{*}Seminar on Discrete Harmonic Analysis and Computer Aided Geometric Design (DHA & CAGD): http://www.dha.spb.ru/

solely by the set of signs of their coefficients Therefore, formulas (2) can be written in the form $B_{\text{equation}}(++++)$

$$P_{2,0} = (+ + + -),$$

$$P_{2,1} = (+ + - +),$$

$$P_{2,2} = (+ - + +),$$

$$P_{2,3} = (- + + +).$$

Similarly we can present the polynomials $P_{3,k}(x)$, $k \in 0:7$. Basing on formulas (1) with m = 2 and $j \in 0:1$ we have

$$P_{3,0} = (+ + + - + + - +),$$

$$P_{3,1} = (+ + + - - - + -),$$

$$P_{3,2} = (+ + - + + + - +),$$

$$P_{3,3} = (- - + - + + + -),$$

$$P_{3,4} = (+ - + + - + - +),$$

$$P_{3,5} = (+ - + + + - - -),$$

$$P_{3,6} = (- + + + + - + +),$$

$$P_{3,7} = (+ - - - + - + +).$$
(3)

 3° . From the definition of the generalized Shapiro polynomials it follows that for all complex z with |z| = 1, the following inequality holds:

$$|P_{m,2j}(z)|^2 + |P_{m,2j+1}(z)|^2 \le 2^{m+1}$$

Actually, a more refined result takes place, as noted in [1].

THEOREM 1. For all $m \ge 1$, $j \in 0: 2^{m-1} - 1$ and complex z with |z| = 1 the following identity holds

$$|P_{m,2j}(z)|^2 + |P_{m,2j+1}(z)|^2 \equiv 2^{m+1}.$$
(4)

Proof. We use the following equality, which is true for all complex numbers z_1, z_2 :

$$|z_1 + z_2|^2 + |z_1 - z_2|^2 = 2(|z_1|^2 + |z_2|^2).$$

For m = 1 (j = 0) and |z| = 1 we have

$$|P_{1,0}(z)|^2 + |P_{1,1}(z)|^2 = |1+z|^2 + |1-z|^2 \equiv 4.$$

We now make the induction step from m to m + 1, assuming that $m \ge 1$.

The index $j \in 0: 2^m - 1$ can be expressed in the form j = 2j' or j = 2j' + 1, where $j' \in 0: 2^{m-1} - 1$. In the first case, basing on (1) and the inductive hypothesis, we have

$$|P_{m+1,2j}(z)|^{2} + |P_{m+1,2j+1}(z)|^{2} = |P_{m+1,4j'}(z)|^{2} + |P_{m+1,4j'+1}(z)|^{2} = = |P_{m,2j'}(z) + z^{2^{m}} P_{m,2j'+1}(z)|^{2} + |P_{m,2j'}(z) - z^{2^{m}} P_{m,2j'+1}(z)|^{2} = = 2(|P_{m,2j'}(z)|^{2} + |P_{m,2j'+1}(z)|^{2}) \equiv 2^{m+2}.$$

The case j = 2j' + 1 is considered in a similar manner.

The theorem is proved.

4°. We select the first two equalities from (1), when j = 0:

$$P_{m+1,0}(x) = P_{m,0}(x) + x^{2^m} P_{m,1}(x),$$

$$P_{m+1,1}(x) = P_{m,0}(x) - x^{2^m} P_{m,1}(x),$$

$$m = 1, 2, \dots$$

We add the initial conditions

$$P_{1,0}(x) = 1 + x, \quad P_{1,1}(x) = 1 - x.$$

Recall (see [2]) that such recursive relations define the Shapiro polynomials. Therefore,

$$P_{m,0}(x) = P_m(x), \quad P_{m,1}(x) = Q_m(x).$$

It is known that the vectors of the coefficients of the Shapiro polynomials $P_m(x)$ and $Q_m(x)$ are orthogonal. Analogous property takes place for the generalized Shapiro polynomials.

Denote by $\mathbf{a}_{m,k}$ the vector of the coefficients of the polynomial $P_{m,k}(x)$.

THEOREM 2. The vectors $\mathbf{a}_{m,k}$, $k \in 0 : 2^m - 1$, are pairwise orthogonal and $\|\mathbf{a}_{m,k}\|^2 = 2^m$.

Proof. Recall that the coefficients of the Shapiro polynomials take values ± 1 , therefore $\|\mathbf{a}_{m,k}\|^2 = 2^m$. We now verify orthogonality. When m = 1 it is obvious. We make the induction step from m to m + 1. For this purpose, we rewrite the relations (1) in the following form

$$\mathbf{a}_{m+1,4j} = (\mathbf{a}_{m,2j}, \mathbf{a}_{m,2j+1}),$$

$$\mathbf{a}_{m+1,4j+1} = (\mathbf{a}_{m,2j}, -\mathbf{a}_{m,2j+1}),$$

$$\mathbf{a}_{m+1,2j+2} = (\mathbf{a}_{m,2j+1}, \mathbf{a}_{m,2j}),$$

$$\mathbf{a}_{m+1,4j+3} = (-\mathbf{a}_{m,2j+1}, \mathbf{a}_{m,2j}).$$

By the induction hypothesis, $\langle \mathbf{a}_{m,k}, \mathbf{a}_{m,k'} \rangle = 0$ for $k \neq k'$. Therefore,

$$\langle \mathbf{a}_{m+1,4j}, \mathbf{a}_{m+1,4j+1} \rangle = \langle \mathbf{a}_{m,2j}, \mathbf{a}_{m,2j} \rangle - \langle \mathbf{a}_{m,2j+1}, \mathbf{a}_{m,2j+1} \rangle = 0, \langle \mathbf{a}_{m+1,4j}, \mathbf{a}_{m+1,4j+2} \rangle = \langle \mathbf{a}_{m,2j}, \mathbf{a}_{m,2j+1} \rangle + \langle \mathbf{a}_{m,2j+1}, \mathbf{a}_{m,2j} \rangle = 0.$$

In a similar manner we see that

$$\langle \mathbf{a}_{m+1,4j+\sigma}, \mathbf{a}_{m+1,4j'+\sigma'} \rangle = 0 \text{ for } (j,\sigma) \neq (j',\sigma').$$

The theorem is proved.

5°. A square matrix \mathcal{P}_m of size 2^m with rows

$$\mathbf{a}_{m,0}, \mathbf{a}_{m,1}, \ldots, \mathbf{a}_{m,2^m-1}$$

is referred to as PONS matrix [3]. The formula (3) gives the presentation of the matrix \mathcal{P}_3 . The matrix \mathcal{P}_4 has the following form:

A row with index k of the \mathcal{P}_m matrix can be seen as the values of the discrete signal

$$p_k(j) = \mathbf{a}_{m,k}(j), \quad k, j \in 0: 2^m - 1.$$

According to theorem 2, the signals p_k are pairwise orthogonal and $||p_k||^2 = 2^m$ for all $k \in 0$: $2^m - 1$. This allows us to include the set of signals $\{p_k\}$ in the apparatus of discrete harmonic analysis.

On fig. 1 the plots of the functions $p_k(j)$ for m = 3 are given.

Figure 1

We formulate two hypotheses.

HYPOTHESIS 1. The matrices \mathcal{P}_m for all $m \geq 1$ are symmetric.

For m = 1, 2, 3 the symmetry is verified directly. The symmetry of the matrices \mathcal{P}_m up to m = 10 was checked using a computer program.

Let $n = 2^m$. By $k = (k_{m-2}, k_{m-3}, \ldots, k_0)_2$ we denote the binary expansion of the number $k \in 0 : \frac{n}{2} - 1$.

HYPOTHESIS 2. For all $m \ge 2$ and $k, k' \in 0$: $\frac{n}{2} - 1$ the following equality holds

$$p_k(j)p_{k'}(j) = \alpha_{k,k'}^m p_{\frac{n}{2}+k}(j)p_{\frac{n}{2}+k'}(j), \quad j \in 0: n-1,$$
(5)

where

$$\alpha_{k,k'}^m = (-1)^{k_{m-2}+k'_{m-2}}.$$

For m = 3 the matrix of coefficients $\{\alpha_{k,k'}^3\}$ is

1	1	-1	-1]
1	1	-1	-1	
-1	-1	1	1	•
-1	-1	1	1	

The validity of the formula (5) for m = 2, 3 is verified directly, and for $m = 4, 5, \ldots, 10$ — with the aid of a computer program.

6°. Any real signal $x = x(j), j \in 0 : n - 1$ can be expanded in the PONS basis $\{p_k(j)\}_{k=0}^{n-1}$:

$$x(j) = \frac{1}{n} \sum_{k=0}^{n-1} \langle x, p_k \rangle p_k(j), \quad j \in 0: n-1.$$

Consider the partial sums

$$x_{\nu} = \frac{1}{n} \sum_{k=0}^{\nu-1} \langle x, p_k \rangle \, p_k, \quad \nu \in 1: n.$$
 (6)

They can be represented as

$$x_{\nu} = D_{m,\nu} x,\tag{7}$$

where $D_{m,\nu}$ are square matrices of the form

$$D_{m,\nu} = \frac{1}{n} \sum_{k=0}^{\nu-1} \mathbf{a}_{m,k}^{\top} \mathbf{a}_{m,k}.$$

We used the definition of the signals p_k and the fact that $\mathbf{a}_{m,k}$ are row vectors. Note that the formula (6) is an equality of rows, and formula (7) is an equality of columns.

The norm of the matrix $D_{m,\nu}$ consistent with the uniform norm of a signal is referred to as Lebesgue constant. We denote it by $L_{m,\nu}$. By definition,

$$L_{m,\nu} = \max_{i \in 0: n-1} \sum_{k=0}^{n-1} |D_{m,\nu}[i,k]|.$$

We formulate two more hypotheses.

HYPOTHESIS 3. The Lebesgue constants $L_{m,\nu}$ do not depend on m.

The following table explains this hypothesis.

															Ta	ble
m							$\overline{L_{m,}}$	$_{ u},$	$\nu \in$	1:	$: 2^{m}$					
2	1	1	$\frac{3}{2}$	1												
3	1	1	$\frac{3}{2}$	1	$\frac{7}{4}$	$\frac{3}{2}$	$\frac{7}{4}$	1								
4	1	1	$\frac{3}{2}$	1	$\frac{7}{4}$	$\frac{3}{2}$	$\frac{7}{4}$	1	$\frac{15}{8}$	$\frac{7}{4}$	$\frac{17}{8}$	$\frac{3}{2}$	$\frac{17}{8}$	$\frac{7}{4}$	$\frac{15}{8}$	1
5	1	1	$\frac{3}{2}$	1	$\frac{7}{4}$	$\frac{3}{2}$	$\frac{7}{4}$	1	$\frac{15}{8}$	$\frac{7}{4}$	$\frac{17}{8}$	$\frac{3}{2}$	$\frac{17}{8}$	$\frac{7}{4}$	$\frac{15}{8}$	1

HYPOTHESIS 4. For $m \ge 2$ the following formulas hold

$$L_{m,2^s} = 1, \quad s \in 0:m;$$
 (8)

$$L_{m,2^s+j} = L_{m,2^s-j} + \frac{j}{2^s}, \quad j \in 1: 2^s - 1, \ s = 1, 2, \dots, m - 1.$$
(9)

The validity of this hypothesis up to m = 6 was checked on a computer. The preliminary proof of hypothesis 4 that I have obtained is based on the hypotheses 1, 2 and 3.

The formulas (8), (9) allow us calculate the values of $L_{m,\nu}$ for all $\nu \in 1 : n$. According to (8), $L_{m,1} = L_{m,2} = 1$. When s = 1 and j = 1, by (9) we find $L_{m,3}$. For any following s we can calculate the values of $L_{m,\nu}$ for ν from 2^s to $2^{s+1} - 1$.

Fig. 2 shows the graph of $L_{m,\nu}$ as a function of ν for m = 6.

REFERENCES

- Byrnes J. S. Quadrature mirror filters, low crest factor arrays, functions achieving optimal uncertainty principle bounds, and complete orthonormal sequences – a unified approach // Applied and Computational Harmonic Analysis. 1994. Vol. 1, P. 261–266.
- Malozemov V. N., Stojanoska I. S. Shapiro polynomials and Reed-Muller codes // Seminar «DHA & CAGD». Selected papers. 26 November 2011 (http://dha.spb.ru/reps11.shtml#1126)
- An M., Byrnes J., Moran W., Saffari B., Shapiro H. S., Tolimieri R. PONS, Reed-Muller codes, and group algebras // NATO Advanced Study Institute: Computational Noncommutative Algebra and Applications. Tuscany, Italy. July 2003. P. 155–197.