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1
◦. Generalized Shapiro polynomials are given in the work [1] by the following

recursive relations

Pm+1,4j(x) = Pm,2j(x) + x2mPm,2j+1(x),

Pm+1,4j+1(x) = Pm,2j(x)− x2mPm,2j+1(x),

Pm+1,4j+2(x) = Pm,2j+1(x) + x2mPm,2j(x),

Pm+1,4j+3(x) = −Pm,2j+1(x) + x2mPm,2j(x),

m = 1, 2, . . . ; j ∈ 0 : 2m−1 − 1,

(1)

and the initial conditions

P1,0(x) = 1 + x, P1,1(x) = 1− x.

In this paper we investigate some of the properties of such polynomials.

2
◦. From (1), in particular, it follows that for m = 1 (and j = 0)

P2,0(x) = 1 + x+ x2 − x3,

P2,1(x) = 1 + x− x2 + x3,

P2,2(x) = 1− x+ x2 + x3,

P2,3(x) = −1 + x+ x2 + x3.

(2)

It is clear that the polynomials Pm,k(x) are defined for k ∈ 0 : 2m − 1, their degree
is 2m − 1 and all their coefficients are equal to ±1. These polynomials are defined
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solely by the set of signs of their coefficients Therefore, formulas (2) can be written
in the form

P2,0 = (+ + +−),

P2,1 = (+ +−+),

P2,2 = (+−++),

P2,3 = (−+++).

Similarly we can present the polynomials P3,k(x), k ∈ 0 : 7. Basing on formu-
las (1) with m = 2 and j ∈ 0 : 1 we have

P3,0 = (+ + +−++−+),

P3,1 = (+ + +−−−+−),

P3,2 = (+ +−++++−),

P3,3 = (−−+−+++−),

P3,4 = (+−++−+++),

P3,5 = (+−+++−−−),

P3,6 = (−++++−++),

P3,7 = (+−−−+−++).

(3)

3
◦. From the definition of the generalized Shapiro polynomials it follows that

for all complex z with |z| = 1, the following inequality holds:

|Pm,2j(z)|
2 + |Pm,2j+1(z)|

2 ≤ 2m+1.

Actually, a more refined result takes place, as noted in [1].

THEOREM 1. For all m ≥ 1, j ∈ 0 : 2m−1 − 1 and complex z with |z| = 1 the

following identity holds

|Pm,2j(z)|
2 + |Pm,2j+1(z)|

2 ≡ 2m+1. (4)

P r o o f. We use the following equality, which is true for all complex numbers z1, z2:

|z1 + z2|
2 + |z1 − z2|

2 = 2(|z1|
2 + |z2|

2).

For m = 1 (j = 0) and |z| = 1 we have

|P1,0(z)|
2 + |P1,1(z)|

2 = |1 + z|2 + |1− z|2 ≡ 4.

We now make the induction step from m to m+ 1, assuming that m ≥ 1.
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The index j ∈ 0 : 2m − 1 can be expressed in the form j = 2j′ or j = 2j′ + 1,
where j′ ∈ 0 : 2m−1−1. In the first case, basing on (1) and the inductive hypothesis,
we have

|Pm+1,2j(z)|
2 + |Pm+1,2j+1(z)|

2 = |Pm+1,4j′(z)|
2 + |Pm+1,4j′+1(z)|

2 =

=
∣

∣Pm,2j′(z) + z2
m

Pm,2j′+1(z)
∣

∣

2
+
∣

∣Pm,2j′(z)− z2
m

Pm,2j′+1(z)
∣

∣

2
=

= 2
(

|Pm,2j′(z)|
2 + |Pm,2j′+1(z)|

2
)

≡ 2m+2.

The case j = 2j′ + 1 is considered in a similar manner.
The theorem is proved.

4
◦. We select the first two equalities from (1), when j = 0:

Pm+1,0(x) = Pm,0(x) + x2mPm,1(x),

Pm+1,1(x) = Pm,0(x)− x2mPm,1(x),

m = 1, 2, . . . .

We add the initial conditions

P1,0(x) = 1 + x, P1,1(x) = 1− x.

Recall (see [2]) that such recursive relations define the Shapiro polynomials. There-
fore,

Pm,0(x) = Pm(x), Pm,1(x) = Qm(x).

It is known that the vectors of the coefficients of the Shapiro polynomials Pm(x)
and Qm(x) are orthogonal. Analogous property takes place for the generalized
Shapiro polynomials.

Denote by am,k the vector of the coefficents of the polynomial Pm,k(x).

THEOREM 2. The vectors am,k, k ∈ 0 : 2m − 1, are pairwise orthogonal and

‖am,k‖
2 = 2m.

P r o o f. Recall that the coefficients of the Shapiro polynomials take values ±1,
therefore ‖am,k‖

2 = 2m. We now verify orthogonality. When m = 1 it is obvious.
We make the induction step from m to m + 1. For this purpose, we rewrite the
relations (1) in the following form

am+1,4j = (am,2j , am,2j+1),

am+1,4j+1 = (am,2j ,−am,2j+1),

am+1,2j+2 = (am,2j+1, am,2j),

am+1,4j+3 = (−am,2j+1, am,2j).
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By the induction hypothesis, 〈am,k, am,k′〉 = 0 for k 6= k′. Therefore,

〈am+1,4j , am+1,4j+1〉 = 〈am,2j , am,2j〉 − 〈am,2j+1, am,2j+1〉 = 0,

〈am+1,4j , am+1,4j+2〉 = 〈am,2j , am,2j+1〉+ 〈am,2j+1, am,2j〉 = 0.

In a similar manner we see that

〈am+1,4j+σ, am+1,4j′+σ′〉 = 0 for (j, σ) 6= (j′, σ′).

The theorem is proved.

5
◦. A square matrix Pm of size 2m with rows

am,0, am,1, . . . , am,2m−1

is referred to as PONS matrix [3]. The formula (3) gives the presentation of the
matrix P3. The matrix P4 has the following form:

P4 =

























































+ + + − + + − + + + + − − − + −
+ + + − + + − + − − − + + + − +
+ + + − − − + − + + + − + + − +
− − − + + + − + + + + − + + − +
+ + − + + + + − − − + − + + + −
+ + − + + + + − + + − + − − − +
− − + − + + + − + + − + + + + −
+ + − + − − − + + + − + + + + −
+ − + + − + + + + − + + + − − −
+ − + + − + + + − + − − − + + +
+ − + + + − − − + − + + − + + +
− + − − − + + + + − + + − + + +
− + + + + − + + + − − − + − + +
− + + + + − + + − + + + − + − −
+ − − − + − + + − + + + + − + +
− + + + − + − − − + + + + − + +

























































.

A row with index k of the Pm matrix can be seen as the values of the discrete
signal

pk(j) = am,k(j), k, j ∈ 0 : 2m − 1.

According to theorem 2, the signals pk are pairwise orthogonal and ‖pk‖
2 = 2m for

all k ∈ 0 : 2m−1. This allows us to include the set of signals {pk} in the apparatus
of discrete harmonic analysis.
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On fig. 1 the plots of the functions pk(j) for m = 3 are given.

p0:

p1:

p2:

p3:

p4:

p5:

p6:

p7:

Figure 1

We formulate two hypotheses.

HYPOTHESIS 1. The matrices Pm for all m ≥ 1 are symmetric.

For m = 1, 2, 3 the symmetry is verified directly. The symmetry of the matri-
ces Pm up to m = 10 was checked using a computer program.

Let n = 2m. By k = (km−2, km−3, . . . , k0)2 we denote the binary expansion of
the number k ∈ 0 : n

2
− 1.

HYPOTHESIS 2. For all m ≥ 2 and k, k′ ∈ 0 : n
2
− 1 the following equality

holds

pk(j)pk′(j) = αm
k,k′ pn

2
+k(j)pn

2
+k′(j), j ∈ 0 : n− 1, (5)

where

αm
k,k′ = (−1)km−2+k′

m−2 .
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For m = 3 the matrix of coefficients {α3
k,k′} is









1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1









.

The validity of the formula (5) for m = 2, 3 is verified directly, and for m =
4, 5, . . . , 10 — with the aid of a computer program.

6
◦. Any real signal x = x(j), j ∈ 0 : n− 1 can be expanded in the PONS basis

{pk(j)}
n−1

k=0
:

x(j) =
1

n

n−1
∑

k=0

〈x, pk〉 pk(j), j ∈ 0 : n− 1.

Consider the partial sums

xν =
1

n

ν−1
∑

k=0

〈x, pk〉 pk, ν ∈ 1 : n. (6)

They can be represented as
xν = Dm,ν x, (7)

where Dm,ν are square matrices of the form

Dm,ν =
1

n

ν−1
∑

k=0

a
⊤

m,k am,k.

We used the definition of the signals pk and the fact that am,k are row vectors.
Note that the formula (6) is an equality of rows, and formula (7) is an equality of
columns.

The norm of the matrix Dm,ν consistent with the uniform norm of a signal is
referred to as Lebesgue constant. We denote it by Lm,ν . By definition,

Lm,ν = max
i∈0:n−1

n−1
∑

k=0

∣

∣Dm,ν [i, k]
∣

∣.

We formulate two more hypotheses.

HYPOTHESIS 3. The Lebesgue constants Lm,ν do not depend on m.
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The following table explains this hypothesis.

Table
m Lm,ν , ν ∈ 1 : 2m

2 1 1 3

2
1

3 1 1 3

2
1 7

4

3

2

7

4
1

4 1 1 3

2
1 7

4

3

2

7

4
1 15

8

7

4

17

8

3

2

17

8

7

4

15

8
1

5 1 1 3

2
1 7

4

3

2

7

4
1 15

8

7

4

17

8

3

2

17

8

7

4

15

8
1

HYPOTHESIS 4. For m ≥ 2 the following formulas hold

Lm,2s = 1, s ∈ 0 : m; (8)

Lm,2s+j = Lm,2s−j +
j

2s
, j ∈ 1 : 2s − 1, s = 1, 2, . . . ,m− 1. (9)

The validity of this hypothesis up to m = 6 was checked on a computer. The
preliminary proof of hypothesis 4 that I have obtained is based on the hypotheses
1, 2 and 3.

The formulas (8), (9) allow us calculate the values of Lm,ν for all ν ∈ 1 : n.
According to (8), Lm,1 = Lm,2 = 1. When s = 1 and j = 1, by (9) we find Lm,3.
For any following s we can calculate the values of Lm,ν for ν from 2s to 2s+1 − 1.

Fig. 2 shows the graph of Lm,ν as a function of ν for m = 6.

Figure 2
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