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1
◦. The Shapiro polynomials are defined by the following recursive relations

Pm+1(x) = Pm(x) + x2mQm(x),

Qm+1(x) = Pm(x)− x2mQm(x).
(1)

for m = 0, 1, . . ., and the initial conditions

P0(x) ≡ 1, Q0(x) ≡ 1

(see [1, 2]). The polynomial Qm(x) is called complementary to the polynomial
Pm(x). Both the polynomials Pm(x) and Qm(x) are of degree 2m − 1.

The coefficients of the Shapiro polynomials take values ±1. We can write
explicit formulas for them. Let

Pm(x) =
2m−1
∑

k=0

ak x
k, Qm(x) =

2m−1
∑

k=0

bk x
k.

We relate to each index k ∈ 0 : 2m − 1 its binary expansion

k = (km−1, km−2, . . . , k0)2,

where kα ∈ {0, 1}. Then, (see [2–4]) for m ≥ 2 and k ∈ 0 : 2m − 1

ak = (−1)
∑

m−1

α=1
kα−1 kα , bk = (−1)

∑
m−1

α=1
kα−1 kα+km−1 . (2)
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The value

ϕ(k) =
m−1
∑

α=1

kα−1 kα

shows, how many times the block [1 1] appears in the binary expansion of the
index k.

We define the Shapiro polynomials of the second kind by the same recursive
relations (1), but with different initial conditions

P0(x) ≡ 1, Q0(x) ≡ −1.

We denote the corresponding polynomials by P̃m(x) and Q̃m(x). In this work we
investigate their properties, including their relation to the Shapiro polynomials of
the first kind.

2
◦. From (1), in particular, it follows that

P̃1(x) = 1− x, Q̃1(x) = 1 + x,

P̃2(x) = 1− x+ x2 + x3, Q̃2(x) = 1− x− x2 − x3,

P̃3(x) = 1− x+ x2 + x3 + Q̃3(x) = 1− x+ x2 + x3 −

+ x4 − x5 − x6 − x7, − x4 + x5 + x6 + x7.

LEMMA 1. The following formulas hold

P̃m+1(x) = P̃m(−x2)− x P̃m(x
2), m = 0, 1, . . . ; (3)

Q̃m+1(x) = Q̃m(−x2)− x Q̃m(x
2), m = 1, 2, . . . . (4)

P r o o f. The identity (3) for m = 0, 1, 2 and the identity (4) for m = 1, 2 are
verified directly. We make the induction step from m to m + 1, assuming that
m ≥ 2.

We rewrite the relations (1), replacing in them m by m− 1 and x by x2:

P̃m(x
2) = P̃m−1(x

2) + x2mQ̃m−1(x
2),

Q̃m(x
2) = P̃m−1(x

2)− x2mQ̃m−1(x
2).

(5)

Now we replace in (1) m by m− 1 and x by −x2. Given the equality (−x2)2
m−1

=
= x2m , which is true for m ≥ 2, we get the relations

P̃m(−x2) = P̃m−1(−x2) + x2mQ̃m−1(−x2),

Q̃m(−x2) = P̃m−1(−x2)− x2mQ̃m−1(−x2).
(6)
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Using the induction hypothesis and the formulas (1), (5), (6) we get the formula (3).
Indeed,

P̃m+1(x) = P̃m(x) + x2mQ̃m(x) = P̃m−1(−x2)− xP̃m−1(x
2) +

+ x2m
[

Q̃m−1(−x2)− x Q̃m−1(x
2)
]

= P̃m−1(−x2) + x2mQ̃m−1(−x2)−

− x
[

P̃m−1(x
2) + x2mQ̃m−1(x

2)
]

= P̃m(−x2)− x P̃m(x
2).

The formula (4) is verified in a similar manner.

3
◦. Let

P̃m(x) =
2m−1
∑

k=0

ck x
k, Q̃m(x) =

2m−1
∑

k=0

dk x
k.

LEMMA 2. The following recursive relations of the coefficients ck hold: c0 = 1
and

c2k = (−1)kck, c2k+1 = −ck (7)

for k ∈ 0 : 2m−1 − 1 and m = 1, 2, . . ..

P r o o f. According to (3)

P̃m(x) = P̃m−1(−x2)− xP̃m−1(x
2) =

=
2m−1

−1
∑

k=0

ck (−x2)k −
2m−1

−1
∑

k=0

ck x
2k+1.

The needed relations obviously follow from this formula.

The recursive relations (7) for k ≥ 1 can be combined into a single formula

c2k+σ = (−1)k(σ+1)+σck, (8)

where σ ∈ {0, 1}. In addition, c0 = 1, c1 = −1.

4
◦. We now obtain an explicit representation for the coefficients ck of the poly-

nomial P̃m(x). Let k = (km−1, km−2, . . . , k0)2 be the binary expansion of the index
k ∈ 0 : 2m − 1.

THEOREM 1. For k ∈ 0 : 2m − 1, m ≥ 2 the following formula holds

ck = (−1)
∑

m−1

α=1
kα−1kα+k0 . (9)
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P r o o f. By induction. For m = 2, when k = (k1, k0)2, the formula (9) is verified
directly (considering that c2 = 1, c3 = 1). We make the induction step from m to
m+ 1, assuming that m ≥ 2.

Let k ∈ 0 : 2m+1 − 1. We represent k in the form k = 2k′ + σ, where k′ ∈ 0 :
2m − 1 and σ ∈ {0, 1}. Let k′ = (k′

m−1, k
′

m−2, . . . , k
′

0)2. Then,

k = (k′

m−1, . . . , k
′

0, σ)2.

According to (8)

c2k′+σ = (−1)k
′(σ+1)+σ ck′ = (−1)k

′

0
(σ+1)+σ ck′ .

We use the induction hypothesis,

ck′ = (−1)
∑

m−1

α=1
k
′

α−1
k
′

α
+k

′

0

to obtain

ck = c2k′+σ = (−1)k
′

0
(σ+1)+σ+

∑
m−1

α=1
k
′

α−1
k
′

α
+k

′

0 =

= (−1)k
′

0
σ+σ+

∑
m

α=2
kα−1kα = (−1)

∑
m

α=1
kα−1kα+k0 .

The theorem is proved.

According to (1) for m ≥ 1

Qm(x) = Pm−1(x)− [Pm(x)− Pm−1(x)].

Therefore, for m ≥ 1

dk = ck when k ∈ 0 : 2m−1 − 1,

dk = −ck when k ∈ 2m−1 : 2m − 1.
(10)

Based on (9) and (10) we conclude that for m ≥ 2

dk = (−1)
∑

m−1

α=1
kα−1kα+k0+km−1 , k ∈ 0 : 2m − 1. (11)

5
◦. Denote by a, b, c, d the vectors of the coefficients of the Shapiro polyno-

mials of the first and the second kind.

THEOREM 2. The vectors a, b, c, d are mutually orthogonal.

P r o o f. The proof follows from the formulas (2) and (9), (11), if we consider that

2m−1
∑

k=0

(−1)k0 = 0,
2m−1
∑

k=0

(−1)km−1 = 0.
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6
◦. We continue investigating the Shapiro polynomials of the second kind.

LEMMA 3. For m ≥ 2 we have the relation

c2m−1−k = (−1)m+k ck, k ∈ 0 : 2m−1 − 1. (12)

P r o o f. When m = 2 the equality (12) is verified directly. We assume that m ≥ 3.
Let k ∈ 0 : 2m−1 − 1, k = (km−2, . . . , k0)2. According to (9),

ck = (−1)
∑

m−2

α=1
kα−1 kα+k0 .

Denote k′ := 2m − 1− k = (1, 1− km−2, . . . , 1− k0)2. By (9),

ck′ = (−1)
∑

m−2

α=1
(1−kα−1)(1−kα)+1−km−2+1−k0 =

= (−1)m−2
∑

m−2

α=1
kα−k0+km−2+

∑
m−2

α=1
kα−1kα−km−2−k0 = (−1)m+kck.

The Lemma is proved.

The formula (12) can be written in the following equivalent form

c2m−1−k = (−1)m+k+1 ck, k ∈ 2m−1 : 2m − 1. (13)

Indeed, let k′ = 2m − 1− k, k′ ∈ 0 : 2m−1 − 1. According to (12), we have

c2m−1−k′ = (−1)m+k
′

ck′ ,

which is equivalent to (13).

7
◦. We now consider the Shapiro polynomials of the second kind as functions

of the complex variable z. Of particular interest is the case when |z| = 1.

THEOREM 3. For m ≥ 1 the following identities hold

P̃m(−z) = (−1)m+1z2
m
−1Q̃m(

1
z ), (14)

Q̃m(−z) = (−1)mz2
m
−1P̃m(

1
z ). (15)

P r o o f. For m = 1 these identities can be verified directly. We will assume that
m ≥ 2.

According to (10) we have

(−1)m+1z2
m
−1 Q̃m(

1
z ) = (−1)m+1

2m−1
∑

k=0

dk z
2m−1−k =

= (−1)m+1

[ 2m−1
−1

∑

k=0

ck z
2m−1−k −

2m−1
∑

k=2m−1

ck z
2m−1−k

]

.
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Along with that, by (13)

2m−1
−1

∑

k=0

ck z
2m−1−k =

2m−1
∑

k=2m−1

c2m−1−k z
k =

2m−1
∑

k=2m−1

(−1)m+k+1ck z
k

and by (12),

−

2m−1
∑

k=2m−1

ck z
2m−1−k = −

2m−1
−1

∑

k=0

c2m−1−k z
k =

2m−1
−1

∑

k=0

(−1)m+k+1ck z
k.

Therefore,

(−1)m+1z2
m
−1 Q̃m(

1
z ) =

2m−1
∑

k=0

(−1)kck z
k = P̃m(−z).

The validity of the identity (14) is established.
We substitute in (14) z by − 1

z to obtain

P̃m(
1
z ) = (−1)m+1(− 1

z )
2m−1Q̃m(−z) = (−1)mz−2m+1Q̃m(−z),

which is equivalent to (15). The theorem is proved.

8
◦. Let θ(m) be the number of positive coefficients of the Shapiro polynomial

of the first kind Pm(x). It is known that (see [2, 4]) for m ≥ 0

θ(2m) = 22m−1 + 2m−1,

θ(2m+ 1) = 22m + 2m.
(16)

We now obtain the corresponding formulas for the complementary polyno-
mial Qm(x). Denote the number of its positive coefficients by η(m). By definition,
η(1) = 1.

LEMMA 4. For m ≥ 1 the following equalities hold

η(2m) = 22m−1 + 2m−1,

η(2m+ 1) = 22m.
(17)

P r o o f. From the recursive relations (1) for the Shapiro polynomials follows that,
for m ≥ 1

θ(m) = θ(m− 1) + η(m− 1),

η(m) = θ(m− 1) + [2m−1 − η(m− 1)].
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We add up this equalities to obtain

η(m) = 2m−1 + 2θ(m− 1)− θ(m). (18)

Now replace in (18) m first by 2m, and then by 2m+1, and use the formulas (16).
We obtain the relations

η(2m) = 22m−1 + 2[22m−2 + 2m−1]− 22m−1 − 2m−1 = 22m−1 + 2m−1,

η(2m+ 1) = 22m + 2[22m−1 + 2m−1]− 22m − 2m = 22m.

The lemma is proved.

Denote by θ̃(m) and η̃(m) the number of positive coefficients of the Shapiro
polynomials of the second kind P̃m(x) and Q̃m(x) respectively.

THEOREM 4. For m ≥ 1 the following equalities hold

θ̃(2m) = θ(2m), (19)

θ̃(2m+ 1) = η(2m+ 1), (20)

η̃(2m) = 22m − η(2m), (21)

η̃(2m+ 1) = θ(2m+ 1). (22)

P r o o f. For m = 1 the equalities (19)–(22) are verified directly. We make the
induction step from m to m+ 1, assuming that m ≥ 1.

According to the induction hypothesis we have

θ̃(2m+ 2) = θ̃(2m+ 1) + η̃(2m+ 1) = η(2m+ 1) + θ(2m+ 1) = θ(2m+ 2). (23)

The relation (19) is established. The relation (21) is verified in a similar manner:

η̃(2m+ 2) = θ̃(2m+ 1) + [22m+1 − η̃(2m+ 1)] = η(2m+ 1) + 22m+1 −

− θ(2m+ 1) = 22m+2 − [θ(2m+ 1) + (22m+1 − η(2m+ 1))] =

= 22m+2 − η(2m+ 2).

(24)

As for the relations (20) and (22), they are verified by using (23) and (24).
Indeed,

θ̃(2m+ 3) = θ̃(2m+ 2) + η̃(2m+ 2) = θ(2m+ 2) + [22m+2 − η(2m+ 2)] =

= η(2m+ 3);

η̃(2m+ 3) = θ̃(2m+ 2) + [22m+2 − η̃(2m+ 2)] = θ(2m+ 2) + 22m+2 −

− [22m+2 − η(2m+ 2)] = θ(2m+ 3).

The theorem is proved.
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