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This paper is a continuation of the work given in [1].

1
◦. Recall the definition of the Shapiro polynomials

P0(x) ≡ 1, Q0(x) ≡ 1

and when m = 0, 1, . . .

Pm+1 = Pm(x) + x2mQm(x),

Qm+1 = Pm(x)− x2mQm(x).
(1)

The polynomial Qm(x) is called supplementary to the polynomial Pm(x).
Let

Pm(x) =
2m−1
∑

k=0

ak x
k.

The following formula for the coefficients ak is given in [1, 2]

ak = (−1)
∑

m−1

α=1
kα−1kα , k ∈ 0 : 2m − 1, m ≥ 2, (2)

where k = (km−1, km−2, . . . , k0)2, kα ∈ {0, 1}.
Denote by bk the coefficients of the polynomial Qm(x)

Qm(x) =
2m−1
∑

k=0

bk x
k.
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THEOREM 1. For m ≥ 1 the following equality holds

bk = (−1)km−1ak, k ∈ 0 : 2m − 1. (3)

P r o o f. According to (1) for m ≥ 1 we have

Qm(x) = Pm−1(x)− [Pm(x)− Pm−1(x)].

It follows from here that

bk = ak for k ∈ 0 : 2m−1 − 1,

bk = −ak for k ∈ 2m−1 : 2m − 1.
(4)

The formula (3) is a union of these relations.

Based on the formulas (2) and (3) we obtain an explicit representation of the
coefficients bk when m ≥ 2:

bk = (−1)
∑

m−1

α=1
kα−1kα+km−1 , k ∈ 0 : 2m − 1.

Note also, that the vectors a = (a0, a1, . . . , a2m−1) and b = (b0, b1, . . . , b2m−1) —
coefficients of the polynomials Pm(x) и Qm(x) are orthogonal. Indeed, by (3)

〈a, b〉 =
2m−1
∑

k=0

akbk =
2m−1
∑

k=0

(−1)km−1a2
k
=

=

(2m−1
−1

∑

k=0

+
2m−1
∑

k=2m−1

)

(−1)km−1 = 0.

2
◦. We will need one additional property of the coefficients of the Shapiro

polynomials Pm(x).

LEMMA 1. For m ≥ 2 the following relations hold

a2m−1−k = (−1)m+1+kak, k ∈ 0 : 2m−1 − 1; (5)

a2m−1−k = (−1)m+kak, k ∈ 2m−1 : 2m − 1. (6)

P r o o f. When m = 2 the equalities (5) and (6) are verified directly. We assume
that m ≥ 3.

We turn first to the equality (5). Let k ∈ 0 : 2m−1 − 1, k = (km−2, . . . , k0)2.
According to (2)

ak = (−1)
∑

m−2

α=1
kα−1 kα .
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Further,
k′ := 2m − 1− k = (1, 1− km−2, . . . , 1− k0)2.

(To check this equality one can use the following fact

k + k′ = 2m − 1 = (1, . . . , 1)2.)

According to formula (2)

ak′ = (−1)
∑

m−2

α=1
(1−kα−1)(1−kα)+1−km−2 =

= (−1)m−1−k0−2
∑

m−2

α=1
kα+

∑
m−2

α=1
kα−1kα = (−1)m+1+kak.

The equality (5) is established.
The equality (6) is derived using (5). Let k ∈ 2m−1 : 2m − 1. In this case, the

index k′ = 2m − 1− k belongs to the set 0 : 2m−1 − 1. According to (5) we have

a2m−1−k′ = (−1)m+1+k
′

ak′

or
a2m−1−k = (−1)m+kak.

The lemma is proved.

3
◦. We now consider the polynomials Shapiro as functions of the complex vari-

able z. Of particular interest is the case when |z| = 1.
The following result was obtained by H. Shapiro in 1951 [3].

THEOREM 2. For m ≥ 1 the following identities hold

Pm(−z) = (−1)mz2
m
−1Qm(

1
z ), (7)

Qm(−z) = (−1)m+1z2
m
−1Pm(

1
z ). (8)

Usually these relations are proved by induction. We will give direct p r o o f.
We start with formula (7). When m = 1 its validity can be verified directly.

We assume that m ≥ 2.
According to (4) we have

(−1)mz2
m
−1 Qm(

1
z ) = (−1)m

2m−1
∑

k=0

bk z
2m−1−k =

= (−1)m
[ 2m−1

−1
∑

k=0

ak z
2m−1−k −

2m−1
∑

k=2m−1

ak z
2m−1−k

]

.
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At the same time, according to (6)

2m−1
−1

∑

k=0

ak z
2m−1−k =

2m−1
∑

k=2m−1

a2m−1−k z
k =

2m−1
∑

k=2m−1

(−1)m+kak z
k

and according to (5)

−
2m−1
∑

k=2m−1

ak z
2m−1−k = −

2m−1
−1

∑

k=0

a2m−1−k z
k =

2m−1
−1

∑

k=0

(−1)m+kak z
k.

Therefore,

(−1)mz2
m
−1 Qm(

1
z ) =

2m−1
∑

k=0

(−1)kak z
k = Pm(−z).

The validity of the identity (7) is established.
Substitute in (7) − 1

z instead of z. We obtain

Pm(
1
z ) = (−1)m(− 1

z )
2m−1Qm(−z) = (−1)m+1z−2m+1Qm(−z),

which is equivalent to (8).
The theorem is proved.

4
◦. Let us consider one elegant property of the Shapiro polynomials’ coefficients,

noted in [2].
Denote by θ(m) the number of positive coefficients of Pm(x).

THEOREM 3. For m ≥ 0 the following equalities hold

θ(2m) = 22m−1 + 2m−1, (9)

θ(2m+ 1) = 22m + 2m. (10)

We present a detailed p r o o f of this assertion.
When m = 0 the formulas (9) and (10) take the form θ(0) = 1, θ(1) = 2. Their

validity is obvious.
Let us write for m ≥ 0 the expression for Pm(x),

Pm(x) =
2m−1
∑

k=0

ak x
k,

and for Pm+1(x) (see [1]),

Pm+1(x) =
2m−1
∑

k=0

ak x
2k +

2m−1
∑

k=0

(−1)kak x
2k+1. (11)
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Denote by θ0(m) the number of positive ak with even indices and by θ1(m) — the
number of positive ak with odd indices. It is obvious that θ(m) = θ0(m) + θ1(m).
Furthermore, according to (11)

θ0(m+ 1) = θ(m) for m ≥ 0.

The last relation can be rewritten as

θ0(m) = θ(m− 1) for m ≥ 1. (12)

From (11) and (12) it follows that for m ≥ 1

θ(m+ 1) = θ(m) + θ0(m) + [2m−1 − θ1(m)] =

= 2θ0(m) + 2m−1 = 2θ(m− 1) + 2m−1.

We obtain the recurrence relation

θ(m+ 1)− 2θ(m− 1) = 2m−1, m = 1, 2, . . . ; (13)

θ(0) = 1, θ(1) = 2.

From (13) we can obtain an explicit expression for θ(m).
The difference equation (13) has a simple particular solution θ̂(m) = 2m−1. We

will seek the solution of the homogeneous equation θ(m + 1) − 2θ(m − 1) = 0 in
the form θ(m) = λm+1. The value of λ (more precisely two of its values) are
determined from the condition λ2−2 = 0. We arrive at the general solution of the
equation (13)

θ(m) = 2m−1 + c1(
√
2)m+1 + c2(−

√
2)m+1.

We choose the constants c1 и c2 such that the initial conditions are satisfied

1 = θ(0) = 1
2
+ c1

√
2− c1

√
2,

2 = θ(1) = 1 + 2c1 + 2c2.

We obtain

c1 =
2 +

√
2

8
, c2 =

2−
√
2

8
.

The explicit expression for θ(m) takes the form

θ(m) = 2m−1 +
2 +

√
2

8
(
√
2)m+1 +

2−
√
2

8
(−

√
2)m+1.

This obviously implies the equalities (9) and (10).
Тhe theorem is proved.
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COROLLARY. For m ≥ 0 the following equalities hold

P2m(1) = 2m, P2m+1(1) = 2m+1,

P2m(−1) = 2m, P2m+1(−1) = 0.

When m = 0 the equalities are obvious. For m ≥ 1 we take into account that

Pm(1) =
2m−1
∑

k=0

ak = θ(m)− [2m − θ(m)] = 2θ(m)− 2m,

Pm(−1) =
2m−1
∑

k=0

(−1)kak = θ0(m)− [2m−1 − θ0(m)]−

−
{

θ1(m)− [2m−1 − θ1(m)]
}

= 2 [θ0(m)− θ1(m)] =

= 2 [ 2θ0(m)− θ(m)] = 2 [ 2θ(m− 1)− θ(m)].
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