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CONTINUOUS WAVELET TRANSFORM ON THE
ONE-SHEETED HYPERBOLOID
A. Askari Hemmat, Z. Yazdani Fard

Department of Mathematics, Shahid Bahonar University of Kerman,
Kerman, Iran

askari@mail.uk.ac.ir

The one-sheeted hyperboloid H1,1 with Cartesian equation x2
0−x2

1−
x2

2 = −1 may be parametrized as x = (sinh χ, cosh χ cos ϕ,

cosh χ sin ϕ), where χ ∈ R, 0 ≤ ϕ < 2π. The motions on H1,1 are of
two types: (i) rotations: x(χ, ϕ) 7→ (χ, ϕ+ϕ0); and (ii) displacements:
x(χ, ϕ) 7→ (χ+χ0, ϕ). They constitute the group SO0(1, 2). To define
dilation on H1,1, project it onto the cone C = {ξ = (ξ0, ξ1, ξ2) ∈
R3 : ξ2

0 − ξ2
1 − ξ2

2 = 0}, with dilatin ξ 7→ aξ. In polar coordinates, the
dilation oprator acts on a point x(χ, ϕ) by Da(χ, ϕ) = (χa, ϕ), with
sinhχa = asinhχ.

For all test functions f on H1,1 introduce the following pair of transforms
f̂±(ν, ξ) = 〈f(x), ε±ν, ξ(x)〉, where ν ∈ R+, ξ varies on the half cone
C+ = {ξ ∈ C : ξ0 > 0} and the kernels ε±ν, ξ(x) are hyperbolic plane
waves. This transformation is called the Fourier-Helgason transform.
Let ψ ∈ L2(H1,1) be a symmetric and rotation invariant function,
a 7→ α(a) a positive function on R+

∗ , we say that ψ is admissible
if there exists constants m and M such that0 < m ≤ Aψ(ν) :=∫ ∞

0
|(ψ̂a)±(ν)|2α(a)da ≤ M < ∞. Given an admissible H1,1-wavelet ψ,

the H1,1-continuous wavelet transform of f ∈ L2(H1,1) is Wf(a, g) :=

〈ψa, g, f〉 =

∫

H1,1

ψa(g−1x)f(x)dµ(x), g ∈ SO0(1, 2), a > 0 where

ψa(x) = λ(a, x)
1
2ψ(D 1

a
x) such that λ(a, x) is the Radon-Nikodym

derivative. We show that a symmetric and rotation invariant function
ψ ∈ L2(H1,1) is admissible if α(a)da be a homogeneous maesure of
the form α−βda with β > 3 and the following zero-mean condition is

satisfied
∫

H1,1

ψ(χ, ϕ)dµ(χ, ϕ) = 0.
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DECONVOLUTION BY MATCHING PURSUIT USING
SPLINE WAVELET PACKETS DICTIONARIES

Amir Z. Averbuch, Valery A. Zheludev
School of Computer Science, Tel Aviv University, Israel

zhel@post.tau.ac.il

We present an efficient method that restores signals from strongly
noised blurred discrete data. The method can be characterized as a
regularized matching pursuit (MP), where dictionaries consist of spline
wavelet packets. It combines ideas from spline theory, wavelet analysis,
theory of ill-posed problems and greedy algorithms. The computational
engine, which enables to construct versatile libraries of spline wavelet
packet dictionaries and fast implementation of the algorithm, is the
Spline Harmonic Analysis (SHA). SHA imposes harmonic analysis
methodology onto spline spaces. It is especially applicable to convolution
operations. The use of splines enables to map the discrete noised data
into spaces of continuous functions, which approximate the sought after
solution in the proper smoothed class. The main distinction from the
conventional MP is that the different dictionaries are used to test data
and to approximate the solution. In addition, the regularized correlation
coefficients instead of the conventional ones are used. The regularizing
parameters and the stopping rule for the algorithm are determined
automatically. Experimental results exhibit a highly efficient algorithm.
The coherent structure of the signals, which were subjected to the strong
blurring and immersed into deep noise, were extracted.
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AN HYBRID ALGORITHM FOR DATA COMPRESSION
Amir Z. Averbuch1, Valery A. Zheludev1, Moshe Guttmann1,

Dan D. Kosloff2

1School of Computer Science
Tel Aviv University, Israel

2Department of Earth and Planetary Sciences
Tel Aviv University, Israel

amir@math.tau.ac.il

We present an algorithm that compresses two-dimensional data
arrays, which are piece-wise smooth in one direction and have oscillating
events in the other direction. Seismic, hyper-spectral and fingerprints
data have this mixed structure. The transform part of the compression
process is an algorithm that combines wavelet and the local cosine
transform (LCT). The quantization and the entropy coding parts of
the compression were taken from the SPIHT codec. To efficiently apply
the SPIHT codec to a mixed coefficients array, reordering of the LCT
coefficients takes place. This algorithm outperforms other algorithms
that are based only on the 2D wavelets transforms. Its compression
capabilities are also demonstrated on multimedia images that have a
fine texture. The wavelet part in the mixed transform of the hybrid
algorithm utilizes the library of Butterworth wavelet transforms.

TO ONE ADDITIONAL EXTREMAL PROPERTY OF
REGULAR SIMPLEX

V.F. Babenko1, Yu.V. Babenko2,
N.V. Parfinovych1, D.S. Skorokhodov1

1 Dnepropetrovsk National University, UKRAINE,
2 Sam Houston State University, Huntsville, TX, USA
babenko.vladislav@gmail.com, YVB001@shsu.edu,

nparfinovich@yandex.ru, dmitriy.skorokhodov@gmail.com

For a d-dimensional simplex T , let Lp(T ), 1 ≤ p ≤ ∞, be the space
of functions f : T → R endowed with the usual norm ‖ · ‖Lp(T ). Denote
g±(x) = max{g(x); 0}, x ∈ Rd. Let α, β > 0 be given. For f ∈ Lp(T ),
the asymmetric Lp-norm is defined as follows

‖f‖Lp;α,β(T ) := ‖αf+ + βf−‖Lp(T ).
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Let S1(T ) := {g(x) = axt + c : a ∈ Rd, c ∈ R,x ∈ T }. For
f ∈ Lp(T ), set

E(f ;S1(T ))Lp;α,β(T ) := inf{‖f − u‖Lp;α,β(T ) : u ∈ S1(T )}.
Note that E(f ;S1(T ))Lp;1,1(T ) is the usual best approximation of f by

linear functions on T in the Lp-metric. Let Q(x) =
d∑

j=1
x2

j . We solve the

following extremal problem:

E(Q;S1(T ))Lp;α,β(T ) → inf, |T | = 1, (1)

where |T | stands for the volume of simplex T .
To the best of our knowledge, problem (1) was solved only in the case

of one-sided approximation (interpolation) and in the case α = β = 1,
p = 2 and d = 2. Problem (1) is important for many questions in
Conves Geometry, approximation of convex bodies by polytopes and
approximation of surfaces by splines. Let T0 be the regular simplex of
unit volume in Rd. We obtained the following result.

Theorem. Let α, β > 0, d ∈ N and 1 ≤ p ≤ ∞. Then

E(Q;S1(T0))Lp;α,β(T0) = inf
T : |T |=1

E(Q;S1(T ))Lp;α,β(T ).

EXACT ASYMPTOTICS OF THE OPTIMAL Lp-ERROR
OF ASYMMETRIC LINEAR SPLINE APPROXIMATION

V.F. Babenko1, Yu.V. Babenko2,
N.V. Parfinovych1, D.S. Skorokhodov1

1 Dnepropetrovsk National University, UKRAINE,
2 Sam Houston State University, Huntsville, TX, USA
babenko.vladislav@gmail.com, YVB001@shsu.edu,

nparfinovich@yandex.ru, dmitriy.skorokhodov@gmail.com

Let D = [0, 1]2. By Lp, 1 ≤ p ≤ ∞, denote the space of functions
f : D → R endowed with the usual norm ‖ · ‖p. Let α and β be positive
continuous on D functions, and let f ∈ Lp. Then, asymmetric Lp-norm
is defined as follows

‖f‖Lp;α,β(D) := ‖αf+ + βf−‖p,
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where g±(·) = max{g(·); 0}.
A collection 4N = 4N(D) = {Ti}N

i=1 of N triangles, N ∈ N, in
the plane is called a triangulation of a set D provided that: any pair
of triangles from 4N intersects at most at a common vertex or along a

common edge, and D =
N⋃

i=1
Ti.

Given a triangulation 4N , let S(4N) be the space of continuous on
D functions, which are linear on every triangle Ti ∈ 4N . Now set

RN(f, Lp;α,β) := inf
4N

inf
s∈S(4N )

‖f − s‖Lp;α,β(D),

where the first inf is taken over all triangulations with N triangles.
Let T0 be the equilateral triangle. For f ∈ C2(D), set H(f ; ·) :=

∂2f
∂x2 (·)∂2f

∂y2 (·)−
(

∂2f
∂xy(·)

)2
. Let

Cp;α,β(x, y) := inf
a,b,c∈R

‖u2 + v2 − au− bv − c‖Lp;α(x,y),β(x,y)(T0).

Theorem. Let f ∈ C2(D); H(f ; x, y) ≥ C+ > 0 for all (x, y) ∈ D.
Let positive continuous on D functions α and β also be given. Then for
all 1 ≤ p < ∞,

lim
N→∞

N ·RN(f, Lp;α,β) =

(∫

D

H
p

2(p+1) (f ; x, y)C
p

p+1

p;α,β(x, y) dxdy

)p+1
p

.

ESTIMATES OF MODULUS OF CONTINUITY FOR
FUNCTION FROM BESOV-TYPE SPACE

Eugeny Berezhnoi
Yaroslavl State University, Yaroslavl, Russia

ber@uniyar.ac.ru

Let X be a symmetric function space on I = [0; 1]n, ψ(X, t) =
‖χ([0, t1/n]n)|X‖ - is a fundamental function of X and

ω(f, h; X) = sup
0≤|δ|≤h

‖f(. + δ)− f(.)|X‖
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is a modulus of continuity of function f . Let Λα
X,p is a Besov-type space

with norm

‖f |Λα
X,p‖ = (

∞∑
i=1

(2αi · ω(f, 2−i; X))p
)1/p

, (α ∈ (0, 1), p ∈ [1,∞)).

Theorem. Let ε > 0, X be a symmetric space, f ∈ Λα
X,p and a sequence

positive numbers{εi ↓ 0} such that
∞∑
i=1

εi < ε,

∞∑
i=1

(
2−α·i/p

ψ(X; εi)

)q

< ∞, (
1

p
+

1

q
= 1).

Let is

Ω(h) = inf
k
{h

(
k∑

i=1

(
2i · 2−α·i/p

ψ(X; εi)

)q

+
∞∑

i=k+1

(
2−α·i/p

ψ(X; εi)

)q
)1/q

}.

There exists the set W (ε) ⊂ I and c > 0 such that

µ(W (ε)) < ε,

and if x, y ∈ I\W (ε), then

|f(x)− f(y)| ≤ c · Ω(|x− y|) · ‖f |Λα
X,p‖,

so c not depend from ε and f .
Author had proved analog of this theorem for function with Holder

condition before.
The author was supported by grant RFFI, N 08-01-00669.

FRACTAL HARMONIC WAVELETS
Carlo Cattani

University of Salerno (SA), Italy
ccattani@unisa.it

Fractal Harmonic Wavelets (FHW) are special class of fractal-like
bases, defined on the so-called Harmonic Wavelets. Harmonic wavelets
are complex values wavelets, of Littlewood-Paley type, with sharp
compact support in Frequency domain. The real part of these functions
give rise to the Shannon Wavelets multiresolution analysis (based on
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the well-known sinc-function) which can be considered as based on the
infinite degree interpolating functions. It is by using a finite degree
interpolation (Fractal Interpolating Functions, FIF), that Hardin and
Massopust (and later Geronimo et Al.) started in 90ies the theory
of fractal wavelets. The main fractal properties (self-similarity, fractal
dimension, nowhere differentiability) of FHW are shown. Moreover, the
reconstruction of fractals, by using FHW, is explicitly given in some
examples. In particular, the generalized Riemann-Weierstrass function
is reconstructed in the FHW theory and recognized as a particular case
thereof.
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APPLICATION OF WAVELETS FOR SOLVING OF
BOUNDARY PROBLEMS

N.I. Chernykh,Yu.N. Subbotin
IMM UB RAN, Ekaterinburg, Russia

Chernykh@imm.uran.ru, yunsub@imm.uran.ru

In Il’in’s papers [1] for solutions of a boundary-value Dirichlet
problem in doubly-connected domains for elliptic partial differential
equations, the asymptotic expansion with respect to a small parameter
was given, when the small parameter is the cross dimension of a slit
contracting to a segment. The expansion is series in fractional powers
and powers logarithmic functions of the small parameter. In this report
on the results of [2] a basis of harmonic wavelets is constructed in
an elliptic ring and its approximation properties are investigated (see
also [3]). The obtained results are used to analyze the behavior of the
solution U(ζ, ϕt, ϕR) of a boundary-value Dirichlet problem {∆U = f

in E(t, R), U |ΓR
= UR(ζ), U |Γt

= Ut(ζ)} in a domains E(t, R) between
two confocal ellipses Γt, ΓR, where Γτ is ξ2

((τ+τ−1)/2)2 + η2

((τ−τ−1)/2)2 = 1,
1 ≤ t < R, under the contraction of the contour Γt to the slit Γ1. The
received expansion of the solution U(ζ, ϕt, ϕR) on harmonic wavelets in
E(t, R) converges uniformly in E(t, R) (1 ≤ t < R), and none of the
series terms depends critically on the small parameter t−1 → 0 (do not
converges to 0 or ∞ as 1 ≤ t ≤ τ → 1 for the general functions ϕR(ζ);
hence, none of these elements is infinitely small with respect to another
as t → 1). The expansion of U(ζ, ϕt, ϕR) does not involve, as in [1],
terms with negative degrees of the functions

√
1− ζ2 and ln |

√
1− ζ2|.

It can be differentiated along the lines Γτ for all τ ∈ [1, R) termwise
except for the endpoints of the cut for τ = t = 1. The corresponding
expansion of derivative converges in domain E(t, R) for t > 1. Such
derivative ∂tU(ζ, ϕt, ϕR)

∣∣∣
ζ∈Γτ

grows unboundedly, the order of growth

being O(1/|
√

ζ2 − 1|), only for ζ tending to the ends of the cut.
This work was supported by the RFBR (08-01-00320, and 09-

01-00014), by the Program of OMS "Contemporary problem of
mathematics 2009.
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APPROXIMATIVE PROPERTIES OF WAVELETS
WHICH ARE INTERPOLATING AND ORTHOGONAL

N.I. Chernykh,Yu.N. Subbotin
IMM UB RAN, Ekaterinburg, Russia

Chernykh@imm.uran.ru, yunsub@imm.uran.ru

In the report new systems of periodic wavelets and wavelets
on the whole axis are constructed (based upon Meyer wavelets);
these systems are orthogonal and interpolating simultaneously. Two
methods are proposed of constructing the required functions. Let
ϕ̂(ω) = ϕ̂ε(ω) be the arbitrary Meyer-type functions supported on
[−(1 + ε)/2, (1 + ε)/2], 0 < ε ≤ 1/3 (see [1]), and ϕ̂1(ω) =
ϕ̂(ω)+(1− ϕ̂(ω)− ϕ̂(ω − 1))/2+i (signω)

√
ϕ̂(ω)ϕ̂(ω − 1)/2, ϕ̂2(ω) =

|ϕ̂(ω)|2+i (signω)ϕ̂(ω)ϕ̂(ω−1). The corresponding function ϕs(x) (s =
1, 2) generate the orthonormal bases {ϕs,j,k(x) = 2j/2ϕs(2

jx − k)}k∈Z

of the subspaces {Vs,j}j∈Z, which constitute the multiresolution analysis
of the space L2(R). This systems are simultaneously interpolating on
the grid {xj,r = r/2j : r ∈ Z} in the sense that 2−j/2ϕs,j,k(xj,r) =
δr,k (r, k ∈ Z). The corresponding wavelets ψs(x) can be defined as
usual by ψ̂s(ω) = eiπωms((ω + 1)/2)ϕ̂s(ω/2) (s = 1, 2), the system
{2−j/2ψs,j,k(x)}j,k∈Z is interpolating on the grid

{2k−1
2j+1 : j, k ∈ Z

}
.

Denote by Φs,j,k(x) and Ψs,j,k(x) (j, k ∈ Z+, 1 ≤ k ≤ 2j) the
trigonometric polynomial of order [2j−1(1+ε)], Φs,j,k(x) =

∑
ν∈Z

ϕs,j,k(x+

ν), Ψs,j,k(x) =
∑
ν∈Z

ψs,j,k(x + ν), The system {2−j/2Ψs,j,k(x) : j, k ∈
N, 1 ≤ k ≤ 2j} is also interpolating on the grid

{2l−1
2j+1 : j ∈ Z+,

l ∈ Z
}
.

Estimates of the errors of approximation in the Chebyshev norm
different classes of smooth functions by these wavelets will be formulated
in the report.

On the Dubuk and Evangelista orthonormal-interpolating wavelets
see in [2].
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This work was supported by the RFBR (08-01-00213, and 09-
01-00014), by the Program of OMS "Contemporary problem of
mathematics 2009.
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HYPERSPECTRAL IMAGING AND DIMENSIONALITY
REDUCTION
Charles Chui

University of Missouri - St. Louis and Stanford University
ckchuistanford.edu

Since human vision is restricted to electromagnetic radiation in the
frequency band of 400 – 790 terahertz (1 THz = 1012 cycles per
second), wavelengths of visible light to the human eye are limited to
the range of 400 – 700 nm (1 meter = 109 nanometers). On the other
hand, with 12 color channels and complex structure, the eyes of a
mantis shrimp have the capability of viewing electromagnetic radiation
ranging from ultraviolet (UV: 10 nm – 400 nm) to some range of the
infrared spectrum (Near IR: 700 nm – 1,000 nm). In other words, a
mantis shrimp has the so-called “hyperspectral” vision. With the recent
rapid advances of satellite, senor, and computing technologies, it is now
feasible to capture, render, and (off-line) analyze complex hyperspectral
image (HSI) data of sufficiently high resolution. We will discuss the
“what and why” of hyperspectral imaging, and briefly mention a wide
spectrum of its practical applications: from agricultural monitoring to
geospatial mapping, and from security surveillance to cancerous tissue
detection in medical imaging. However, the mathematics of HSI is
most challenging and requires innovative ideas, since the data-set of
a typical HSI cube is quite large. For instance, the data kernel of a
one megapixel-resolution HSI with 200 spectral bands is a 106x200
matrix. Hence, a very important problem is to be able to reduce the
kernel size while preserving the important data information, such as
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manifold geometry and topology. This problem is called “dimensionality
reduction” of HSI data. Unfortunately, linear methods such as principal
component analysis (PCA) and multi-dimensional scaling (MDS) are
not effective for the study of dimensionality reduction of HSI data. On
the other hand, to apply such powerful mathematical tools as diffusion
maps and diffusion wavelets, the first step is to symmetrize the HSI
data matrix, resulting in square matrices of very high dimensions,
governed by the image resolution instead of the number of spectral
bands. I will briefly discuss the general architecture of the current
non-linear methods for dimensionality reduction to achieve symmetry,
the various difficulties that arise, and the defects of current solutions
to overcome such difficulties, particularly in terms of neighborhood
selection and data-set tiling. I will then discuss the approach that my
collaborator, Jianzhong Wang, and I recently introduced and end my
talk by demonstrating our methods with some experimental results.

WAVELETS ON A MANIFOLD
Yuri K. Dem’yanovich

Faculty of Mathematics and Mechanics,
St.-Petersburg State University, Russia
Yuri.Demjanovich@JD16531.spb.edu

Numerical flows associated with a smooth manifold can be processed
using local functions (see [1]). However, wavelet decompositions have to
be invoked to develop efficient algorithms.

The goal of this paper is to describe the scheme for
constructing wavelets based on approximation relations. Specifically,
conditions for embedding spaces of local functions are presented,
a wavelet decomposition is constructed, the corresponding
decomposition/reconstruction formulas are derived, the number of
operations in them is assessed, and the order of smallness of the
wavelet component is estimated in terms of the approximation order.
The classical approaches to the construction of wavelets are based on
the Fourier transform or the lifting scheme (see [2-6]). In this paper,
we start from approximation relations (see [7-8]). As a result, the
wavelet decompositions constructed have an order of approximation
that is asymptotically optimal with respect to the N -width of standard
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compact sets. Moreover, the coordinate wavelets are smooth, and
they have a compact support of minimal (index) length (for a given
approximation order). The coefficient in the linear dependence of
the computational complexity on the amount of input data is easily
estimated in terms of the approximation order.

This work was supported by the Russian Foundation for Basic
Research, project nos. 07-01-00451 and 07- 01-00269.
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О ПРИБЛИЖЕНИИ ПЕРИОДИЧЕСКИХ ФУНКЦИЙ
СИНГУЛЯРНЫМИ ИНТЕГРАЛАМИ С

ПОЛОЖИТЕЛЬНЫМИ ЯДРАМИ.
Н. Ю. Додонов

Санкт-Петербургский государственный университет
dodonov@math.spbu.ru

Для пространств Lp и C, состоящих из 2π-периодических функ-
ций двух переменных, рассматривается следующий вопрос: как свя-
зано поведение величин

∥∥∥∥∥∥

b∫

a

d∫

c

∆r
u,v(f ; ·)ϕn(u)ψm(v)dudv

∥∥∥∥∥∥
p

при n,m →∞, где a ≥ 0, c ≥ 0,

∆r
u,v(f ; x, y) =

r∑
i,j=1

(−1)i+jCi
rC

j
rf(x + iu, y + jv)− f(x, y),

ϕn, ψm - положительные ядра, со структурными свойствами функ-
ции f , характеризуемыми посредством её модулей непрерывности.

Приведём пример установленных результатов. Через

ω1(f ; u, v)p = sup
|t|≤u,|h|≤v

‖f(x + t, y + h)− f(x, y)‖p

обозначаем модуль непрерывности первого порядка функции f в
пространстве Lp,

Φn(t) =
1

2πn

(
sin nt

2

sin t
2

)2

— ядро Фейера.

Теорема. Пусть 1 ≤ p ≤ ∞, f ∈ Lp при 1 ≤ p < ∞, f ∈ C при
p = ∞,

σ∗n,m(f ; x, y) = 4

π∫

0

π∫

0

f(x + u, y + v)Φn(u)Φm(v)dudv.

Тогда выполнение совокупности соотношений

lim
n→∞

πn

2 ln n
lim

m→∞
‖f − σ∗n,m(f)‖p ≤ K,
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lim
m→∞

πm

2 ln m
lim
n→∞

‖f − σ∗n,m(f)‖p ≤ L

равносильно выполнению неравенства

ω1(f ; u, v)p ≤ Ku + Lv (u, v ∈ R+).
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p-ADIC MULTIRESOLUTION ANALYSES, WAVELET
BASES AND FRAMES

Sergei Evdokimov
St.Petersburg Department of Steklov Mathematical Institute

Russian Academy of Sciences, St.Petersburg, Russia
evdokim@pdmi.ras.ru

We review the contents of papers [1–5]. This in particular includes the
definition of a p-adic multiresolution analysis (MRA) and the statement
that any orthogonal scaling test function generating such an MRA
is 1-periodical and, moreover, in contrast to the real case generates
in fact the Haar MRA. Furthermore, within the framework of the
MRA theory we describe a general technique of constructing wavelet
systems that form frames and Riesz bases in L2(Qp). A realization
of the technique is presented. Namely, we construct an infinite family
of mutually distinct MRA’s each of which is generated by a non-1-
periodical (and consequently non-orthogonal) scaling test function, and
show that this leads to an infinite family of mutually distinct non-
orthogonal wavelet Riesz bases.
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WAVELETS AND FRAMES ON THE CANTOR DYADIC
GROUP

Yu.A. Farkov
Russian State Geological Prospecting University, Russia

farkov@ list.ru

The Cantor dyadic group C is defined to be the locally compact
abelian group formed by taking the weak cartesian product of a
countable many copies of the discrete cyclic group Z2 with the product
of topologies. It is well-known that Walsh functions are characters for
C (see, e.g., [1]). Orthogonal compactly supported wavelets on C were
introduced in 1996 by W.C. Lang. Some further results and the detailed
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bibliographi on this subject are given in [2], [3]. In this talk, we present
several examples of frames for C.
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LAYER POTENTIALS AND WAVELETS ON REGULAR
SURFACES
Willi Freeden

TU Kaiserslautern, Geomathematics Group, Germany
freeden@mathematik.uni-kl.del

The talk is concerned with wavelets on regular surfaces such as
sphere, ellipsoid, geoid, Earths surface, etc. By means of the limit
and jump relations of classical potential theory the wavelet approach
is explained in detail. The properties of a multiresolution analysis are
verified by explicitly available potential kernel representations, and a
tree algorithm for fast computation is developed based on numerical
integration. As applications of the potential theoretic wavelet approach
some numerical examples are presented, including the zoom-in property
of high frequency perturbations.

Finally fast multiscale representations of the solution of boundary
value problems are discussed for several types of differential equations,
viz. the Helmholtz equation, the Cauchy-Navier-equations of elasticity,
the Maxwell equations of electromagnetic theory, and the Stokes
equations of fluid dynamics.
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NEW VARIANT OF WAVELETS DECOMPOSITIONS
FOR SPLINE SPACES

Mohamed Waleed C. O. Gabr
St. Petersburg, Russia
mwaleed73@yahoo.com

In previous researches (see [1-3]) for construction wavelet
decomposition biorthogonal system of functionals, defined by the
derivatives of the generating function was used. However, in cases
where the values of the derivatives of the generating functions are
not known, should be limited to only the values of the function
itself. In this paper, biorthogonal system is defined by means of
differences, that allows to construct wavelets decomposition, using
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only the value of the mentioned function. As a result the formulas
of decompositions and reconstruction are deduced; without using
the derivatives of the functions which generate numerical flows.
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NONSEPARABLE WAVELETS OF MEYER TYPE IN
BESOV AND LIZORKIN-TRIEBEL SPACES 1

S. A. Garkovskaya
Voronezh State University, Russia

GarkovskayaSA@mail.ru

Nonseparable wavelets of Meyer type in R2 associated to the dilation

matrix M :=

(
0 −1
2 1

)
were constructed in [1]. It is proved that

Fourier transforms of nonseparable wavelets of Meyer type, associated
to the dilation matrix M , can be used as decomposition of unity in
definition of Besov and Lizorkin-Triebel spaces. The result is the first
step in the proof of unconditional basisness of above mentioned wavelets
in scales under consideration. The basisness of separable wavelets of
Meyer-David type is investigated in [2, c. 498] . The proof of the basisness
of nonseparable wavelets in Besov spaces can be found in [3].

Theorem:Let ϕ be the scaling function for the multiresolution

analysis associated to the dilation matrix M =

(
0 −1
2 1

)
, ψ ∈ L2(R2)

1This work is supported by RFBR (grant 08-01-00226-a).
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— is a Meyer type wavelet associated to M . Let ν = {νj(ξ)}∞j=0, where
ν0(ξ) = ϕ̂(ξ), νj(ξ) = ψ̂((M ∗)−(j−1)ξ) ЇаЁ j = 1, 2, 3, . . . .

(i). Let −∞ < s < ∞, 1 < q 6 ∞, 1 < p 6 ∞. Then

‖f |Bs
p,q(R2)‖ν = ‖2sjF−1νjFf |lq(Lp(R2))‖

are equivalent norms in Bs
p,q(R2).

(ii). Let −∞ < s < ∞, 1 < q 6 ∞, 1 < p < ∞. ’ R©J¤

‖f |F s
p,q(R2)‖ν = ‖2sjF−1νjFf |Lp(lq,R2)‖

are equivalent norms in F s
p,q(R2).
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PAIRS OF DUAL WAVELET FRAMES IN VARIOUS
FUNCTION AND DISTRIBUTION SPACES

Bin Han
University of Alberta
bhan@math.ualberta.ca

In this talk, we shall discuss wavelets under the framework of pairs of
dual wavelet frames in various function and distribution spaces. We fully
characterize dual wavelet frames in distribution spaces, which allows
us to naturally connect wavelets in function spaces to the fast wavelet
transform in the discrete setting. This also enables us to understand
better many basic properties of traditional wavelets. Next, we shall
discuss dual wavelet frames in various function spaces, in particular,
Sobolev spaces. Wavelet frames and Riesz wavelets in Sobolev spaces
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are of interest in numerical algorithms and image processing. The
traditional approach is to obtain wavelets in L2(R

d), and then to extend
such wavelets to certain Sobolev spaces. This approach excludes many
interesting wavelets in Sobolev spaces. In this talk, we shall present
a natural framework to study dual wavelet frames and Riesz wavelets
in a pair of Sobolev spaces (Hs(Rd), H−s(Rd)) for any real number
s. The fundamental norm equivalence property of wavelet expansions
for functions in Sobolev spaces will become a natural byproduct of
our approach. Examples will be provided to illustrate our results. For
example, we show that {2j(1/2−s)Bm(2j · −k) : j ∈ N0, k ∈ Z} is
a wavelet frame in Hs(R) for any 0 < s < m − 1/2, where Bm is
the B-spline of order m. This is also true for a large class of refinable
functions (no stability is required) including almost all box splines
in any dimension. If time permits, recent developments on symmetric
orthonormal complex wavelets, which are particular families of dual
wavelet frames, will also be mentioned in this talk.

COMPARISON CONTINUES WAVELET TRANSFORM
AND DISCRETE WAVELET TRANSFORM IN SIGNAL

FEATURE EXTRACTION
Ali Ghaffari, Ensieh Sadat Hosseini Rooteh

Dept. of Mechanical Engineering, Khaje Nasir Toosi University,
Tehran, Iran

ghaffari@kntu.ac.ir, ensiehhoseini@gmail.com

Wavelet transform is one of the high power signal processing and
feature extraction instruments. Wavelet transform is a common method
for feature extraction in pattern recognition field. In this study some
heart diseases are diagnosed by electrocardiogram signal analysis. Heart
disease detection has two steps. In the first step heart signal features are
extracted by continues wavelet transform and discrete wavelet transform.
Neural networks are used in second step for feature vector classifying.
Finally by comparing the result of heart disease detection with two
methods of feature extractions, the ability of continues wavelet transform
and discrete wavelet transform methods in signal processing and feature
extractions are compared.
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ALGEBRAS WITH WAVELETS, REPRODUCING
KERNELS, DELTA FUNCTIONS.

S. Gritsutenko
Omsk State Transport University, Russia

st256@mail.ru

Firstly Hilbert Space is defined. Then the convolution is defined there.
Then delta vector is defined there. Some features of delta vector are
proved (for example, that such delta vector is the Mother Wavelet).
Other words, method for building of wavelets in arbitrary Hilbert space
is described in this address.

REVERSE TIME MIGRATION USING WAVELETS FOR
DATA REDUCTION

Maxim Ilyasov
Germany

ilyasov@itwm.fhg.de

Seismic migration methods plays a prominant role in the geophysical
science, for example in the oil or gas exploration. Reverse time migration
(RTM) based on the full-way wave equation is such the method, that
able to yield fine interior structural details, despite certain deficiency of
initial values.

However, the main disadvantage of RTM, that makes this method
in most of cases unusable, is the high computational requirements and
I/O, for saving intermediate wave-field propagations, that are needed to
calculate result image.

The main goal of this work is to modify the classical RTM. To reduce
the high volumes of computational data, we use checkpoint technique,
that saves intermediate data at the rough grid. To define the wave-field
at the fine grid we apply the wavelet-approach [Freeden & Schreiner,
2009], that can easily reconstruct this wave-field with the given accuracy
locally. The advantage of this approach is reduction of unwanted internal
reflections and noise. It makes also possible to apply the advanced
imaging condition [Liu et al. 2007].

All this techniques produce images of reflectors with less noise than
classical RTM and significantly reduce the computational time.
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ON THE CONNECTION BETWEEN THE CONTINUITY
MODULE WITH PIECEWISE-POLYNOMIAL

APPROXIMATIONS
Irina Irodova

Yaroslavl Demidov State University, Russia
IrinaIrodova@gmail.com

Let Q0 be a unit cube in d-dimensional space. We will call the
partition Fn of cube Q0 "almost" dyadic, if the partition Fn consists
of parallelepipeds with edges of length ≈ 2−n and the partition Fn+1 is
a refinement of the partition Fn.

Let Pk be a space of polynomials of degree k − 1 for each variable.
Let us denote by Pk(Π) a space of piecewise-polynomial functions,
subordinated to partition Π of cube Q0. Then ek(f, Π)p - a distance
from f befor Pk(Π) in Lp(Q0).

The next result allows us to compare the degree of approximation by
piecewise-polynomial functions in different norms.

Theorem 1. Let f ∈ Lp(Q0), 0 < p < q < ∞, then

ek(f, Fn)q ≤ c ·
( ∞∑

i=n

(
2id( 1

p− 1
q)ek(f, Fi)p

)q
) 1

q

,
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where Fn, Fi are "almost" dyadic partitions.
Let us denote wk(f, t)p as the sum of all partial modules of continuity

of a function f . There exists a connection between wk(f, t)p and
piecewise-polynomial approximations.

Theorem 2. Let f ∈ Lp(Q0), 0 < p ≤ ∞. There is a way to select
special "almost" dyadic partitions F̃ i

n, such that

wk(f, 2−n)p ≈
2d∑
i=1

ek(f, F̃ i
n)p.

Using Theorem 1 and Theorem 2 the following corollary can be
obtained:

Corollary 1. Let f ∈ Lp(Q0), 0 < p < q < ∞, then

ωk(f, 2−n)q ≤ c ·
( ∞∑

i=n

(
2id( 1

p− 1
q)ωk(f, 2−i)p

)q
) 1

q

.

IMAGE QUALITY ASSESSMENT AND WAVELETS
V.V. Khryashchev , D.A. Zaramensky

Yaroslavl, Russia
connect@piclab.ru

Historically full-reference image quality assessment methods used
simple mathematic evaluations such as peak signal-to-noise ratio
(PSNR). These methods were fast and simple but not well correlated
with subjective criterion mean opinion score (MOS) and were not
universal.

In modern image processing application modified image quality index
(MIQI) is used. This criterion is based on wavelet decomposition and
on human visual system peculiarities. The MIQI algorithm consists of
applying universal image quality index (UIQ) [1] to each subband in one
level wavelet decomposition of original and given images. The resulted
MIQI is calculated as:
MIQI = 0.57 ·UIQLL + 0.17 ·UIQLH + 0.15 ·UIQHL + 0.09 ·UIQHH

were weights corresponds to human visual sensitivity to the subbands.



26 International Conference

This algorithm was tested during the visual experiment for
calculating MOS for more than 100 images with different type of
distortions (JPEG, JPEG2000, impulse noise, additive white Gaussian
noise (AWGN)). The results are shown in table 1.

Таблица 1: Correlation between MOS and objective estimations.
Distortion Objective Estimations

PSNR UIQ MIQI
Gaussian Blur 0.396 0.733 0.732

JPEG 0.517 0.776 0.890
JPEG2000 0.845 0.751 0.878

Impulse Noise 0.950 0.944 0.884
AWGN 0.979 0.893 0.936

MIQI distinguishes images equal in PSNR metric and shows good
correlation with MOS. This criterion will be helpful in developing new
optimal image processing algorithms and optimizing existing ones. The
common drawback of UIQ and MIQI algorithms is that original image
is needed.
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REPRESENTATIONS OF ALMOST PERIODIC
FUNCTIONS USING WAVELET FRAMES

Yeonhyang Kim, Amos Ron
Central Michigan University and University of Wisconsin-Madison

kim4y@cmich.edu

We represent the space of almost periodic (AP) functions using a
wavelet system. With this representation in hand, our objective is to
compute, or at least to estimate, the norm of the underlying function.
Our observation is that this norm estimation of AP functions is valid
if and only if the given wavelet system is an L2(R)-frame. Moreover,
the frame bounds of the system are also the sharpest bounds in
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our estimation. This gives a surprising connection between L2(Rd)-
representations and AP-representations.
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SMOOTH FUNCTIONS ASSOCIATED WITH WAVELET
SETS ON Rd, d ≥ 1, AND FRAME BOUND GAPS

Emily King
UMD, USA

eking@math.umd.edu

The theme is to smooth characteristic functions of Parseval
frame wavelet sets by convolution in order to obtain implementable,
computationally viable, smooth wavelet frames. We introduce the
following: a new method to improve frame bound estimation; a shrinking
technique to construct frames; and a nascent theory concerning frame
bound gaps. The phenomenon of a frame bound gap occurs when certain
sequences of functions, converging in L2 to a Parseval frame wavelet,
generate systems with frame bounds that are uniformly bounded away
from 1. We prove that smoothing a Parseval frame wavelet set wavelet on
the frequency domain by convolution with elements of an approximate
identity produces a frame bound gap. Furthermore, the frame bound gap
for such frame wavelets in L2(Rd) increases and converges as d increases.
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WAVELET DENOISING OF EXPERIMENTAL DATA
WITH NON-STATIONARY NOISE

T.N. Knyazeva,N.I. Oreshko
Research and Engineering Center of Saint Petersburg
Electrotechnical University, St. Petersburg, Russia

ktn@nic.spb.ru, oreshko@nic.spb.ru

Numerous existing methods of denoising which have already been
introduced in regression and wavelet analyses work effectively only
for stationary noise or on the assumption that the noise model may
be considered non-stationary and noise itself can be approximated
by a smooth curve with preliminary known parameters. However,
according to the results obtained after analyzing a wide range of
processes encountered in various practical applications, the original
signal often includes both the wanted quasideterministic signal and the
non-stationary noise with the variance that might change at random
time points and has an unknown general law. In the present paper
some new contributions to the field of signal denoising are proposed.
They are all based on the wavelet transform and are intended to process
signals embedded in non-stationary noise. These new methods including
some specific features of the tasks dealing with non-stationary noise are
expounded in further context.

In many well-known denoising techniques the whole original signal
is used for calculating special thresholds which are applied to
contaminated signals in order to eliminate noise and extract only
the pure signal component as a result. The estimation procedure
for estimating threshold values involves determining the root-mean-
square error (RMSE) calculated on the basis of all signal samples.
Nonetheless, sometimes such an approach may lead to unsatisfactory
results, for example, when noise variance for some signal fragments
differs significantly from that obtained for the rest of a signal and,
therefore, the local RMSE is not equal to the global one.

The first method is aimed at removing noise whose variance changes
rapidly at some time points (hence, there is a jump change), i.e.
the corresponding variance dependence in time is a piecewise-constant
function. In accordance with the new denoising strategy, which has been
developed and thoroughly investigated, two subsequent steps are needed.
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At first, cluster-analysis (directed at splitting the original data into a
number of groups with similar properties) is employed with the purpose
of classifying all wavelet coefficients that are located at decomposition
levels. Thus, we will manage to discover the groups of data possessing
constant variance, the groups indicating some typical signal fragments.
Then threshold calculation for each cluster discovered is done separately
so that the values themselves are different from each other unlike those
provided after the widely used classical thresholding techniques where
thresholds are calculated either only once (the single-level thresholding)
or for each level independently (the multilevel thresholding) without
performing any wavelet coefficient classification.

The main idea behind the second step is to find the law to which
RMSE change of noise is generally subject. Even though this law is not
known in advance, it should be definitely represented by a smooth curve;
otherwise this strategy will not succeed or produce inaccurate results in
the end. Due to the fact that the wavelet transform is interpreted as a
dyadic filter bank structure, there is no difficulty extracting noise. The
algorithm consists of four main steps: 1) The magnitudes of the noise
component derived are defined; 2) The mean trend in noise is defined; 3)
The original signal is normalized by means of being divided by the trend
that was previously estimated. It is also necessary to take into account
a normalizing factor caused by the law of half-normal distribution; 4)
Threshold processing of wavelet coefficients by means of the threshold
selected is carried out. Finally, via the inverse wavelet transform the
pure original signal is reconstructed.

The new methods offered in the manuscript extend the possibilities
of noise removal with the help of the underlying thresholding strategy.
Furthermore, they allow one to cope with heteroscedastic noise, which
is of paramount importance here in view of incapability of most classical
methods to deal with this problem.
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SOME EXTREMAL PROBLEMS OF VARIOUS METRICS
AND SHARP INEQUALITIES OF NAGY-KOLMOGOROV

TYPE
V. Kofanov

Dnepropetrovsk, Ukraine
vladimir.kofanov@gmail.com

For r ∈ N and p ∈ (0,∞] we denote by Lr
p,∞(R) the space of all

functions x : R → R for which x(r−1) are locally absolutely continuous,
x ∈ Lp(R) and x(r) ∈ L∞(R).

For any fixed interval [α, β] ⊂ R, given r ∈ N, and γ, δ, p > 0, we
solve the following extremal problems

∥∥∥x(k)
∥∥∥

Wq

→ sup and
∥∥∥x(k)

∥∥∥
Lq[α,β]

→ sup

over all functions x ∈ Lr
p,∞(R) such that L(x)p ≤ γ,

∥∥x(r)
∥∥
∞ ≤ δ, in

the cases 1) k = 0, q ≥ p, 2) 1 ≤ k ≤ r − 1, q ≥ 1, where

‖x‖Wq
:= lim

∆→∞
sup
a∈R


 1

∆

a+∆∫

a

|x (t)|q dt




1/q

,
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L(x)p := sup








b∫

a

|x(t)|pdt




1
p

: a, b ∈ R, |x(t)| > 0, t ∈ (a, b)





.

We prove also the following sharp inequality of Nagy-Kolmogorov
type

∥∥∥x(k)
∥∥∥

Wq

≤
‖ϕr−k‖Wq

L(ϕr)α
p

L(x)α
p

∥∥∥x(r)
∥∥∥

1−α

∞
, x ∈ Lr

p,∞(R),

in the cases 1) and 2), where ϕr is the perfect Euler’s spline of order r

and α = (r − k)/(r + 1/p).
Besides, we show that for any ω, γ, δ > 0 there exists a function

x ∈ Lr
p,∞(R) such that

∥∥∥x(k)
∥∥∥

Wq

= ω, L(x)p = γ,
∥∥∥x(r)

∥∥∥
∞

= δ

if and only if

ω ≤
‖ϕr−k‖Wq

L(ϕr)α
p

γα δ1−α.

The generalization of Calderon and Klein’s inequality for the entire
functions of exponential type σ is established.

ON APPROXIMATION OF FUNCTIONS BY
TRIGONOMETRIC POLYNOMIALS WITH
INCOMPLETE SPECTRUM IN Lp, 0 < p < 1

Yurii S. Kolomoitsev
Institute of Applied Mathematics and Mechanics, Donetsk, Ukraine

kolomus1@mail.ru

Let A be a proper subset of Z. Then the system {eikx}k∈A is not
complete in the space Lp(0, 2π) for p ≥ 1. A somewhat different situation
arises in Lp with p < 1.

For some sets A ⊂ Z that possess certain arithmetic properties, the
estimates of the best approximation

En(f, A)p := inf{‖f − T‖Lp(0,2π) : T ∈ span{eikx}k∈A∩(−n,n)}
are obtained.
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Consider the class of functions

Hα
1,p := { f : ‖f‖1 + sup

n≥1
nαEn−2(f,Z)p ≤ 1}.

Theorem Let 0 < p < 1, Q = Z \ {±qk}k∈N (q ≥ 2) and n ∈ N. The
following statements hold:

(i) if 0 < α < 1
p − 1, then

sup
f∈Hα

1,p

En(f,Q)p ³ n−α;

(ii) if 1
p − 1 ≤ α ≤ 2

p − 2, then

C1n
1− 1

p ≤ sup
f∈Hα

1,p

En(f, Q)p ≤ C2(ln(n + 1))
1
pn1− 1

p ;

(iii) if α > 2
p − 2, then

sup
f∈Hα

1,p

En(f, Q)p ³ n1− 1
p

where ³ is two-sided inequalities with positive constants that depend
only on p, q and α; C1 and C2 are the positive constants that depend
only on p and q.

Similar results are obtained for the sets S = Z \ {±ks}k∈N (s ≥ 2)
and M = Z \ (−m,m).

FRAMES OF p-ADIC WAVELETS AND
REPRESENTATION THEORY

S.V. Kozyrev
Steklov Mathematical Institute, Moscow, Russia

kozyrev@mi.ras.ru

Development of the p-adic wavelet theory was initiated in [1].
We discuss the new approach to the p-adic wavelet theory based on

the representation theory of p-adic groups. In this approach frames of
wavelets are considered as orbits (i.e. systems of coherent states, cf. [2])
of some groups of transformations.



WAVELETS AND APPLICATIONS 33

It is easy to see that the action of a sufficiently small transformation
(i.e. belonging to some vicinity of the unit of the group of
transformations) on a p-adic test function (locally constant function with
compact support) leaves this function invariant.

Therefore the orbit of a test function will be a discrete set. We show
that this set in some interesting cases can be computed explicitly and
will be (for the cases under consideration) a frame of wavelets.

We discusss the following two cases.

1) In the one dimensional case [3] we consider the action of the p-
adic affine group on a generic mean zero locally constant function with
compact support (mean zero test function). We show that this orbit is
a uniform tight frame and compute the bound of this frame.

We discuss the relations of this result with the multiresolution wavelet
analysis and show that the introduced approach allows to construct
multiresolution frames as well as frames which can not be described
by the multiresolution construction.

2) We construct a multidimensional basis of p-adic wavelets [4]
using the direct generalization of the one dimensional case of [1]. The
relation of the constructed basis to representations of the p-adic group of
transformations, generated by translations, homogeneous dilations and
norm conserving linear transformations, is discussed. We show that the
set of products of the vectors from the constructed basis and p-roots of
one is the orbit of this p-adic group of transformations.

We also show that this multidimensional wavelet basis coincides
with the basis generated by the multiresolution construction in many
dimensions (which for p = 2 was discussed in [5]).

Keywords: p–adic wavelets, frames of wavelets, multiresolution
analysis, representation theory
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PARAMETRIZATION OF BIVARIATE NONSEPARABLE
HAAR WAVELETS. 2

M.S. Krasilnikova
Voronezh State University, Russia

krasilnikovams@nm.ru

A parametrization of all orthogonal wavelet bases for Haar
multiresolution analysis is derived. The bases generated by three
piecewise constant wavelets {ηi(x, y)} supported on [0, 1] × [0, 1] with
values aij, i = 1, 2, 3; j = 1, 2, 3, 4 are considered.

In order to describe the values aij geometrical approach was used.
After two changes of variables we have the following system of equations:





cos(β1 − β2) = −4 ctg α1 ctg α2

cos(β2 − β3) = −4 ctg α2 ctg α3

cos(β1 − β3) = −4 ctg α1 ctg α3

Where α1, α2, α3 must satisfy the following condition:

1− 16 ctg2 α1 ctg2 α2 − 16 ctg2 α1 ctg2 α3 − 16 ctg2 α2 ctg2 α3−
−128 ctg2 α1 ctg2 α2 ctg2 α3 = 0

Choosing α2, α3 as independent variables we solve this system in regard
to β2, β3 (β1 is assumed to be equal to 1 for simplicity). The signs of
arc cosines are dependent on the given α2, α3. The inverse changes of
variables will give the required description of the values.

2This work is supported by RFBR (grant 08-01-00226-a).
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The cases when some of the values are equal to zero are of interest
in application. In this work different variants of zeroes’ arrangement are
studied and the general type of such systems is described.
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DIFFERENT EXTENSIONS OF THE WIENER’S
TAUBERIAN LEMMA AND MEMORY LOCALIZATION.

Ilya A. Krishtal
Northern Illinois University, USA

krishtal@math.niu.edu

In this semi-expository talk I will describe a unified point of view on
how different extensions of the Wiener’s Tauberian Lemma are related to
different types of memory localization such as off-diagonal decay, frame
localization, etc. Localized LU -type factorizations and connections with
sampling theory will be mentioned.

MULTIVARIATE FRAME-SIMILAR WAVELET
SYSTEMS

Alexander Krivoshein.
St. Petersburg State University

Department of Applied Mathematics and Control Processes
St. Petersburg, Russia.
san_san@inbox.ru

Let M be an integer d× d matrix whose eigenvalues are bigger than
1 in module, m = | det M |; if f ∈ L2(Rd), then fjk := mj/2f(M j ·+k).

A general scheme for the construction of dual wavelet frames is
well known [1]. One starts with a pair of refinable masks m0, m̃0 and
finds wavelet masks mν, m̃ν, ν = 1, . . . , r, r ≥ m − 1, according to
Unitary Extension Principle [1]. The corresponding wavelet functions
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ψ(ν), ψ̃(ν) generate dual wavelet systems {ψ(ν)
ik }, {ψ̃(ν)

ik }. The systems
form dual frames whenever ψ(ν), ψ̃(ν) satisfy a number of conditions.
Unfortunately, it is hard enough to check these conditions in practice
(in fact, some smoothness of ψ(ν), ψ̃(ν) should be checked). If we have
only ψ(ν), ψ̃(ν) ∈ L2(Rd), then the wavelet systems {ψ(ν)

jk }, {ψ̃(ν)
jk } is said

to be dual frame-similar wavelet systems.
Theorem 1. Let {ψ(ν)

ik } {ψ̃(ν)
ik } be dual frame-similar compactly

supported wavelet systems. Then for all f, g ∈ L2(Rd) we have

〈f, g〉 =
∞∑

i=−∞

r∑
ν=1

∑

k∈Zd

〈f, ψ̃
(ν)
ik 〉〈ψ(ν)

ik , g〉.

If n ∈ N, n ≥ 1, is the order of vanishing moments of the wavelet
functions ψ̃(ν)(x), then for all f from the Sobolev space W n

2 we have
∥∥∥∥∥f −

j−1∑
i=−∞

r∑
ν=1

∑

k∈Zd

〈f, ψ̃
(ν)
ik 〉ψ(ν)

ik

∥∥∥∥∥
2

≤ C
‖f‖Wn

2

(|λ| − ε)jn
,

where λ is a minimal (in module) eigenvalue of M , ε > 0, |λ| − ε > 1,
C is a constant which does not depend on f , j, i.e. the frame-similar
decomposition converges in norm and has approximation order n.

The case d = 1, M = 2 was investigated with M.Skopina in [2].
References

1. Ron A. and Shen Z., Affine systems in L2(R
d): the analysis of the

analysis operator // J. Func. Anal. – 1997 – 148 – P. 408–447.

2. Кривошкин А.В., Скопина М.А., Фреймоподобные системы
всплесков // Зб. праць Iн-ту математики НАН Украiни. — 2009.
— Т. 6, №1. — С. 96–114



WAVELETS AND APPLICATIONS 37

AD-FRAMES SATISFYING PROPERTY B
Shiv Kaushik Kumar 1, Varinder Kumar2

1Department of Mathematics, Kirori Mal College (University of Delhi),
Delhi, INDIA

shikk2003@yahoo.co.in
2Department of Mathematics, University of Delhi,

Delhi, INDIA
vicky.h1729@gmail.com

A generalization of atomic decompositions for Banach spaces, namely
AD-frames has been introduced and studied. A characterization of
AD-frames satisfying property B has been given. Also, we gave
a sufficient condition for an AD-frame to satisfy property B and
a necessary condition for a particular type of AD-frame satisfying
property B. Finally, we prove a result regarding quasi-reflexivity
of Banach spaces having AD-frames satisfying property B and
property RSM.

2000 Mathematics Subject Classification. 42C15, 42A38, 42C40

Key Words: Atomic decompositions; Frames; AD-frames.

FRAMES AND THE KADISON-SINGER PROBLEM
W. Lawton

Department of Mathematics National University of Singapore
Singapore

matwml@nus.edu.sg

Let φ = Fourier transform of the characteristic function of a Cantor
set with positive measure. Bownik and Speegle [2] ask if Z = Λ1∪· · ·∪Λn

with each Λj(φ) = {φ(·−τ) : τ ∈ Λj } a Riesz basis? Since a yes answer
requires a Λj with positive density, they asserted ([2], page 1142) that
the result of Bourgain and Tzafriri [1] showing the existence of such a
set "remains the strongest indicator that the answer to" their question
is yes. We prove that the answer to their question is yes iff there exists
a syndetic Λ and study properties of Λ(φ), for some sets Λ arising in
harmonic analysis [6] and ergodic theory [4], that suggest a no answer
to their question and hence by [3] to the Kadison-Singer problem [5].
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QUASISPLINE WAVELET 3

E.A. Lebedeva
Kursk State University, Russia
ealebedeva2004@gmail.com

The article [1] shows that the uncertainty constants tend to infinity as
smoothness grows for a broad class of orthogonal scaling functions and
wavelets, for instance Daubechies wavelets and Battle-Lemarie wavelets.
However, a family of modified Daubechies wavelets is described in [2]
and [3]; the time-frequency localization of the autocorrelation function
constructed for the scaling function of a wavelet of this family is
preserved with the growth of smoothness. New scaling functions and
wavelets, introducing in [4], decay exponentially at infinity and have the
decay of order O(ωl) as |ω| → ∞ in the frequency domain, like spline

3This work is supported by RFBR (grant 09-01-00162).
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wavelets; the uncertainty constants of the scaling functions (wavelets)
tend to those of the Meyer scaling function (the Meyer wavelet) with
respect to the smoothness parameter l.

The function ml(ω) := (cos 0, 5ω)2lVN(l)(m
M
l , ω)

(
VN(l)(m

M
l , 0)

)−1
,

is the mask of the stable, but not orthogonal scaling function ϕl :
ϕ̂l(ω) :=

∏∞
j=1 ml

(
ω
2j

)
. By VN(l)(m

M
l , ω) denote the de la Vallee-Poussin

mean of mM
l , where mM

l (ω) := mM(ω)(cos 0, 5ω)−2l, and mM is a mask
of the Meyer wavelet. The orthonormal scaling function ϕ⊥l is defined

by ϕ̂⊥l (ω) := ϕ̂l(ω)
(∑

k∈Z |ϕ̂l(ω + 2πk)|2
)−0,5

.

Application of some others linear methods of summability instead of
the de la Vallee-Poussin means is discussed.
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APPROXIMATION OF SOBOLEV AND OTHER CLASSES
BY POLYNOMIALS AND RIDGE FUNCTIONS

D. Leviatan
TAU, Israel

leviatan@math.tau.ac.il

Joint work with V. N. Konovalov and V. E. Maiorov

Let W r
p (Bd) be the usual Sobolev class of functions on the unit ball

Bd in Rd, and W ◦,r
p (Bd) be the subclass of all radial functions in W r

p (Bd).
We show that for the classes W ◦,r

p (Bd) and W r
p (Bd), the orders of best

approximation by polynomials in Lq(Bd) coincide. We also obtain exact
orders of best approximation in L2(Bd) of the classes W ◦,r

p (Bd) by ridge
functions and, as an immediate consequence, we obtain the same orders
in L2(Bd) for the usual Sobolev classes W r

p (Bd).
We also obtain estimates on the order of best approximation by

polynomials and ridge functions in the spaces Lq of classes of s-monotone
radial functions which belong to the space Lp, 1 ≤ q ≤ p ≤ ∞.

HAAR SERIES ON LOCALLY COMPACT
ZERO-DIMENSIONAL ABELIAN GROUP

S.F. Lukomskii
Department of Mathematics, Saratov University, Saratov, Russia

lukomskiisf@info.sgu.ru

Let (G, f) be a locally compact periodic abelian group and a topology
in group (G, +̇) given by a chain of subgroups

· · · ⊃ G−n ⊃ · · · ⊃ G−1 ⊃ G0 ⊃ G1 ⊃ · · · ⊃ Gn ⊃ . . .
with G =

⋃
n∈Z Gn, {0} =

⋂
n∈Z Gn. Let pn be the order of factor-group

Gn/Gn+1, pn – are prime numbers. We set m0 = 1, mn+1 = mn · pn.
Let X denote the group of characters of the group G, G⊥

n = {χ ∈ X :
χ(Gn) = 1} – annulators of G⊥

n . The set (G⊥
n )+∞

n=−∞ of annulators is the
increasing sequence

· · · ⊂ G⊥
−n ⊂ · · · ⊂ G⊥

−1 ⊂ G⊥
0 ⊂ G⊥

1 ⊂ · · · ⊂ G⊥
n ⊂ . . .

and (G⊥
n+1/G

⊥
n )] = pn. Picking up one element gn ∈ Gn \ Gn+1 and

one character rn ∈ G⊥
n+1 \ G⊥

n for each n ∈ Z. We define Haar-
functions Hjmn+k(x) as Hjmn+k(x) =

√
mnr

j
n(x−̇q)1Gn+̇q(x) (j =
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1, pn − 1; n ∈ Z) where k and q are connected with next condition
q = gn−1αn−1+̇gn−2αn−2+̇ . . . +̇gn−sαn−s ⇔
⇔ k = mn−1αn−1+̇mn−2αn−2+̇ . . . +̇mn−sαn−s.
Theorem 1. The system (Hjmn+k)n∈Z is orthonormal system on G

complete in L2(G).
Theorem 2. Let f : G → C be continuous on G and ωn(f) be a
modulus of continuity of f . If lim

n→+∞
pnωn(t) → 0, then the Haar-Fourier

series of f converge uniformly on any subgroup GN (N ≤ 0).
If pn = p for any n ∈ Z, then we write Haar-function in the form

Hjpn+k(x) = p
n
2 rj

0(A
n(x−̇q))1Gn+̇q(x) (n ∈ Z), where A is dilation

operator for which A(Gn) = Gn−1, A(x+̇y) = Ax+̇Ay. In these case
we can obtain Haar-functions Hjpn+k from one function r0(x)1G0

(x)
using raising to a power, dilation and translation. From one system
{r0(x), r0(x)2, . . . , r0(x)p−1} we can obtain 2

p−1
2 different real-valued

systems
{
ψ

(l)
1 (x), ψ

(l)
2 (x), . . . , ψ

(l)
p−1(x)

}
(l = 1, . . . , 2

p−1
2 ).

This work supported by President program (grant 2970.2008.1)
References

1. Benedetto J.I., Benedetto R.L. A wavelet theory for local field and
related groups// The J. of Geometric Analysis , v.14, N3(2004),
p.423-456.

DECOMPOSITION FORMULAS FOR
INSERTED GROUP OF KNOTS

A.A. Makarov
St. Petersburg State University, Russia

Antony.Makarov@gmail.com

Normalized Bϕ-splines of the second order are constructed. The
splines are continuously differentiable and have the minimal compact
support. Arbitrary grid refinement by successive inserting of single knots
or group of knots is regarded. Representation of splines for initial grid
as a linear combination of splines for refined grid is done. Embedding
of spaces of Bϕ-splines for irregular grids is established. This leads to a
wavelet decomposition (e. g. signals with fast oscillations). The wavelet
basis has compacted support. The decomposition and reconstruction
formulas are obtained.
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EQUIANGULAR TIGHT FRAMES
Vasily N. Malozemov†, Alexander B. Pevnyi‡

†St. Petersburg State University, Russia
‡Syktyvkar State University, Russia

†malv@math.spbu.ru, ‡pevnyi@syktsu.ru

This talk is based on the review paper [1].
Four equivalent definitions of a tight frame are discussed. A

construction of a known Mercedes-Benz frame is generalized for a
case of an n-dimensional space. Notions of Mercedes-Benz systems
and Mercedes-Benz matrix are introduced. A question of existence of
equiangular tight frames is studied.

Extremal properties of tight frames, Mercedes-Benz systems and
equiangular tight frames are pointed out.
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PARAMETRIC FAST FOURIER TRANSFORM
AND WAVELET EXPANSIONS

Vasily N. Malozemov†, Oleg V. Prosekov‡
†St. Petersburg State University, Russia

‡ARC International, St. Petersburg, Russia
†malv@math.spbu.ru, ‡Oleg.Prosekov@ARC.com

The general approach to constructing FFTs involves the
decomposition of the Fourier matrix into a product of sparse matrices.
Various versions of this decomposition depend on the arithmetic
properties of the order of the Fourier matrix and on representations of
its indices. In this talk we present the parametric coding of indices and
obtain the “perfect” parametric decomposition of the Fourier matrix.

Let N = n1n2 · · ·ns, ∆ν = n1n2 · · ·nν−1 (for ν ∈ 2 : s + 1, ∆1 := 1)
and Nν = nν+1nν+2 · · ·ns (for ν ∈ 0 : s− 1, Ns := 1).
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Theorem. For any parameter vector p = (p1, p2, . . . , ps), the Fourier
matrix FN admits the representation

FN =
(
Rev (q1,...,qs)

n1,...,ns

)T
( s∏

ν=1

(
INν

⊗ Twid(p1,...,pν−1,qν)
n1,...,nν−1,nν

)×

× (
INν

⊗ Fnν
⊗ I∆ν

))
Mix(p1,...,ps)

n1,...,ns
,

where ⊗ denotes Kronecker multiplication of matrices, IN is the identity
matrix of order N and q = (q1, q2, . . . , qs) is the adjoint parameter vector
with elements are defined by the condition 〈qν pν〉nν

= 1 for ν ∈ 1 : s.
Also this decomposition involves special matrices: permutation

matrices Rev , Mix and diagonal matrix Twid. The parameter vector can
be chosen so that the number of nontrivial elements (different from ±1
and ±i) in the parametric twiddle matrix decreases in comparison with
the usual (nonparametric) twiddle matrix. Incidentally, permutation
matrices have its decompositions.

Basing on this factorization, we construct sequences of orthogonal
bases in a signal space which generate a parametric wavelet packet.
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MULTIVARIATE COMPLEX B-SPLINES, DIRICHLET
AVERAGES AND APPROXIMATION

Peter Massopust
Institute of Biomathematics and Biometry

Helmholtz Zentrum München
and

Centre of Mathematics, M6
Technische Universität München

Germany
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Complex B-splines Bz are an extension of cardinal B-splines to
complex orders <z > 1. It was shown in [FBU] that such complex
B-splines generate a multiresolution analysis of L2(R). In [FM1,FM2]
several connections between complex B-splines, Dirichlet averages,
fractional derivative and integral operators were exhibited and an
extension to the multivariate setting was given. Several properties of
multivariate complex B-splines were presented in [FM3,M].

In this talk, a summary of the properties of multivariate complex B-
splines, their connection to Dirichlet averages, fractional derivative and
integral operators, as well as complex difference operators is given. Some
new results are also presented. Finally, the approximation-theoretic
properties of multivariate complex B-splines are discussed and the
connection to multiresolution analyses exhibited.
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Dirichlet averages and difference operators submitted to SAMPTA
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M P. Massopust, “Double Dirichlet Averages and Complex B-
Splines,"sumitted to SAMPTA 2009.

THE COMPARATIVE CHARACTERISTIC OF
POLYNOMIAL AND SPLINE METHODS OF

APPROXIMATION OF FUNCTIONS OF ONE VARIABLE
Valery Miroshnichenko

Sobolev Institute of Mathematics, Novosibirsk, Russia
miroshn@math.nsc.ru

The methods comparison of polynomial and spline [2] approximation
regarding the accuracy of approximation of smooth enough single-
variable functions is given in the talk.

• We give an information on the known accuracy estimates of
approximations of function by polynomials and splines.

• We give the numerical results on accuracy of approximation
of some functions, such as f(x) = (1 + x2)−1 (example of
Runge [1]) and other “externally harmless” functions. At the same
time the recommendations for stable computation of polynomial
approximations are given.

Adduced results show that even “not the best” interpolating
polynomial splines regarding the accuracy of approximation exceed
any polynomial methods of approximation, including the best uniform
and the best mean-square approximation. Thereupon no wonder that
known attempts of perfection of polynomial methods of approximation
inevitably lead to a piecewise polynomial approximations, i.e. essentially
to the splines.
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ON UPPER AND LOWER RIESZ BOUNDARIES FOR
B-SPLINE BASES
E.V. Mishchenko

Sobolev Institute of Mathematics, Novosibirsk, Russia
eugenia-m@academ.org

Exact expressions for upper and lower Riesz boundaries for B-spline
bases of arbitrary orders are found. The obtained results make possible
studying the convergency of power series of certain type and uniform
convergency of the Battle-Lemarier scaling functions in the space L2(R).

Let Am,Bm denote the lower and upper Riesz boundaries for B-
spline basis of order m, i.e.

2πAm ·
∞∑

k=−∞
|ck|2 ≤ ||

∞∑

k=−∞
ckBm(· − k)||2L2(R) ≤ 2πBm ·

∞∑

k=−∞
|ck|2

for every {ck} ∈ l2.
Theorem 1.

Am =
22m+2

π2m+3

∞∑

k=0

1

(1 + 2k)2(m+1) , Bm =
1

2π
.

Theorem 2. Let ψm(x) = φm(x− ε
2), here φm is the Battle-Lemarier

function of the order m, ε = 0, if m is even; ε = 1 if m is odd. Then
||ψm − φ||L2(R) → 0 as m → m, where φ is the Shennon-Kotel’nikov
function.

WINDOWED EXPONENTIALS IN FUNCTION SPACES 4

S.Ya. Novikov
Akad.Pavlov, Dept.of Math., Samara St.Univ., Samara, Russia

nvks@ssu.samara.ru

Windowed exponentials are defined in function spaces on bounded
sets. Let B be a bounded set in Rd, g ∈ L2(B), Λ be a sequence of
points in Rd. The sequence

E(g, Λ) =
{
e2πiλ·xg(x)

}
λ∈Λ

4supported by the Ministry of Education and Science of the Russian Federation, the analytical
departmental target program "Development of scientific potential of the higher school"grant N
3341
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is called a system of windowed exponentials in L2(B).
For g(x) ≡ 1, E(g, Λ) is the classical system of exponentials [1].
The connection between the properties of the system of windowed

exponentials in L2(B) and Beurling density of Λ was investigated in
[2]. We consider similar connections in other Function Spaces such as
weigthed Lp

w and modulation spaces.
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SAMPLING OF BAND-LIMITED SIGNALS.
A.M. Olevskii
TAU, Israel

olevskii@yahoo.com

How often one should measure a "signal" with a given spectrum in
order to be able to recover it? What is the optimal "sampling"? Is it
possible to organize it so that it will work for any spectrum of given
size, independently on its localization?

I will survey classical background and discuss some recent results
(joint with A.Ulanovskii).

ON AN OPERATOR-VALUED T(1) THEOREM FOR
VECTOR-VALUED QUASI-LIPSCHITZ SPACES

B.I. Peleshenko
Dnepropetrovsk State Agrarian University, Ukraine

dsaupelesh@mail.ru

In this paper we prove the operator-valued T(1) theorem for vector-
valued spaces defined by means of local approximations.
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`1 GREEDY ALGORITHM FOR SPARSE SOLUTIONS OF
UNDERDETERMINED LINEAR SYSTEMS.

A. Petukhov, I. Kozlov
UGA, USA

The algorithm combining best properties of Orthogonal Greedy
Algorithm and `1 minimization algorithm and outperforming both of
them will be presented.

Its applications to information theory (compressed sensing) and
image compression will be discussed.

USING OF THE CONTOURLET TRANSFORM FOR THE
DIGITAL IMAGE FILTRATION

A. Priorov, V. Volokhov
Yaroslavl State University, Yaroslavl, Russia

volokhov@piclab.ru

Currently, there are many different methods to restore noisy signals
and images. Images are 2D-signals with the inherent geometric structure,
which is the main feature of the visual information. Features are located
along a smooth curve - contours, due to smooth surfaces of section of
displayed objects. The use of separable or inseparable wavelet transform
does not perform the processing of the images in the form of curved
contours, boundaries, etc. In this paper we describe an algorithm for
image reconstruction from noisy data based on contourlet transform [1].
The new transform has the following properties:

1. Multiresolution. The representation allow images to be
successively approximated, from coarse to fine resolutions.

2. Localization. The basis elements in the representation localized
in both the spatial and the frequency domains.

3. Critical sampling. The representation has form a basis, or a
frame with small redundancy.

4. Directionality. The representation contains basis elements
oriented at a variety of directions, much more than the few directions
that are offered by separable wavelets.

5. Anisotropy. To capture smooth contours in images [2], the
representation contains basis elements using a variety of elongated
shapes with different aspect ratios.
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Algorithm of image filtering is as follows:
1. Computing of the contourlet transform images.
2. Changing of the coefficients of contourlet transform for a particular

rule. In this paper we used an algorithm based on a hard threshold
processing transform coefficients.

3. Computing of the inverse contourlet transform.
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WAVELETS AND EQUATIONS OF SELF-SIMILARITY
Vladimir Protasov

Moscow State University, Russia
v-protassov@yandex.ru

Wavelet-functions ψ generating compactly supported wavelets, and
the corresponding refinable functions ϕ can be considered as special
cases of the following general construction. Let Lp[0, 1] be the space of
vector-functions from the segment [0, 1] to Rd with the norm ‖v‖p =(∫ 1

0 |v(t)|p dt
)1/p, let also {Ã1, . . . , Ãm} be a family of irreducible affine

operators in Rd, and 0 = b0 < . . . < bm = 1 be a partition of the
segment [0, 1]. The self-similarity operator Ã:

[
Ã v

]
(t) = Ãk v

(
g−1

k (t)
)
, t ∈ ∆k, k = 1, . . . , m,

is defined on Lp[0, 1], where we denote ∆k = [bk−1, bk] and the affine
function gk(t) = t bk + (1 − t) bk−1 maps [0, 1] to the segment ∆k.
The equation Ãv = v is called self-similarity equation. For any system
of compactly-supported wavelets both ψ and ϕ can be obtained as
solutions of suitable self-similarity equations. Moreover, most of the
classical fractal curves (such as Cantor singular function, Koch and
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de Rham curve, etc.) are solutions of this equation. Equations of this
type appear naturally in the ergodic theory (self-similar measures),
probability (distributions of power random series), etc.

We present a sharp criterion of solvability of this equation in terms
of the affine operators Ãj and of the segments ∆j in Lp[0, 1]. It appears
that the solution is always unique, whenever it exists. Moreover, the
iterations of the operator Ã always converge to this solution for any
initial function. The exponents of local and global regularity of the
solution v(t) and its moduli of continuity can be expressed by spectral
characteristics of the operator Ã.

Applying these results to wavelets theory gives the estimations for
moduli of continuity of compactly supported wavelets in the spaces C

and Lp, and explicit formulae for their local regularity at a given point.
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ОБ ОДНОМ НЕРАВЕНСТВЕ ДЛЯ ЧИСЛОВЫХ
РЯДОВ

Е.И. Радзиевская
IMATH, Ukraine
radz@imath.ua

Пусть ξ := {ξj}j∈N последовательность вещественных чисел,
у которых ξj ≥ ξj+1, j ∈ N и limj→∞ ξj = 0. Каждой такой
ξ = {ξj}j∈N сопоставим последовательность ξ∗ = {ξ∗j}j∈N , полагая
ξ∗j = |ξϕ(j)|, где ϕ(.) — такая перестановка натурального ряда, что
{|ξϕ(j)|}j∈N является невозрастающей последовательностью. Для
двух последовательностей α = {αj}j∈N и ξ = {ξj}j∈N определим
их произведение αξ := {αjξj}j∈N , а если все элементы αj 6= 0, то
α−1 := {α−1

j }j∈N и ξ/α := ξα−1.
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Введем банахово пространство lr, 1 ≤ r < ∞, состоящее из по-
следовательностей ξ = {ξj}j∈N , удовлетворяющих условию

‖ξ‖r :=

( ∞∑

j=1

|ξj|r
)1/r

< ∞, ξ ∈ lr.

Пусть далее 1 < p < ∞, q := p(p − 1)−1, а {ks}s∈N некоторая
подпоследовательность натуральных чисел.

Рассмотрим последлвательность ω = {ωs}s∈N с элементами

ωs :=




ks+1−1∑

j=ks

(α∗j)
−p



−1/p 


ks+1−1∑

j=ks

νj


 .

где αj > 0, 0 ≤ νj ≤ νj+1 для всех j ∈ N и αν ∈ lq.
И, наконец, через Γ обозначим множество всех перестановок на-

турального ряда, а для γ := {γ(j)}j∈N из Γ и последовательности
ξ = {ξj}j∈N положим (ξ)γ := {ξγ(j)}j∈N .

Во введенных обозначениях справедливы следующие утвержде-
ния

Теорема. Пусть 1 ≤ p ≤ ∞, limj→∞ αj = 0 и supj∈N αjνj < ∞.
Тогда

inf
γ∈Γ

‖ν(αη)γ‖p ≤ ω‖η‖1, η ∈ l1,

причем постоянную

ω := sup
j∈N

((ν1)
p + . . . + (νk)

p)1/p

(α∗1)−1 + . . . + (α∗k)−1

в этом неравенстве нельзя уменьшить.
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ON 1959 KADISON-SINGER CONJECTURE AND
FRAMES

Oleg Reinov 5

Department of Mathematics, Saint Petersburg State University
St. Petersburg, Russia

orein51@mail.ru

We are going to discuss, from different points of view, the famous 1959
Kadison-Singer Conjecture (KS): every pure state on the C∗-algebra D

of bounded diagonal operators on the Hilbert space l2 has a unique
extension to a (pure) state on B(l2), the C∗-algebra of all bounded
linear operators on l2. This problem arose from the very productive
collaboration of Kadison and Singer in the 1950s which culminated
in their seminal work on triangular operator algebras. During this
collaboration, they often discussed the fundamental work of Dirac —
P.A.M. Dirac, Quantum Mechanics, 3rd Ed., Oxford University Press,
London (1947). In particular, they kept returning to one part of Dirac’s
work because it seemed to be problematic.

Dirac wanted to find a "representation"(an orthonormal basis) for a
compatible family of observables (a commutative family of self-adjoint
operators). Dirac’s claim, in mathematical form, is that each pure state
of a "complete commuting set"has a unique state extension to B(l2).
By a "complete"commuting set, Dirac means what is now called a
"maximal abelian self-adjoint"subalgebra of B(l2); D is one such. There
are others. For example, another is generated by an observable whose
"simple"spectrum is a closed interval. Kadison and Singer show that
that is not so for each complete commuting set other than D. They also
show that each pure state of D has a unique extension to the uniform
closure of the algebra of linear combinations of operators T defined by
Tπei = eπ(i), where π is a permutation of Z, {ei} is the orthonormal
basis of l2. Kadison and Singer believed that KS had a negative answer.
In particular, on page 397 of the paper "R. Kadison and I. Singer,
Extensions of pure states, American Jour. Math. 81 (1959), 383-400"they
state: "We incline to the view that such extension is non-unique".

We will consider KS-problem within the framework of Frame
Theory for Hilbert spaces, introducing, in particulary, some new notion

5This research was done with partial support by the Fond RFFI Grant 06-01-00457
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connected with frames.

PROPERTIES APp AND AP p IN BANACH SPACES
Oleg Reinov 6

Department of Mathematics, Saint Petersburg State University
St. Petersburg, Russia

orein51@mail.ru

The natural generalizations of AP and BAP (the properties APp,
BAPp, APdual

p etc.) were considered earlier by P. Saphar, the author
and others. All these properties were firstly defined in terms of some
tensor products (generalizations of Grothendieck ones). One of the
question of P. Saphar was to describe the APp in terms of something
like "compact convergence"for absolutely p-summing operators. It was
done earlier by the author of this talk. This small lecture is devoted,
mainly, to the proceeding in the same direction for the class (ideal) Πd

p

of dually absolutely-p-summing operators, and giving the connections
between some notions of "compact convergence"of type πdual

p and the
properties of tensor products, with applications. We will apply the
results to the investigation of a natural question: when a Banach space
has the generalized approximation properties (such as introduced by
the author the properties APp)? We give here some sufficient and some
necessary conditions for the space to have APp as well as construct some
(counter)examples to the APp-approximation problems.

In the very end of the talk, we apply our results to give a new proof of
a much more stronger result than one from my paper in C. R. Acad. Sc.
Paris (concerning a conjecture of A. Grothendieck from his fundamental
work on tensor products). Answering in negative to the Grothendieck
question whether every weakly compact operator with the AP has also
the BAP, we have constructed earlier the example of a compact operator
with AP, but without BAP. Here, in Theorem, we show that there exist
the operators of such a kind, belonging even to the classes of dually
quasi-p-nuclear (hence, compact) operators.

6This research was done with partial support by the Fond RFFI Grant 06-01-00457
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ON CHOOSING A SMOOTHING PARAMETER WITH
HIGH-ORDER CONVERGENT ALGORITHM

Alexander I. Rozhenko
Institute of Computational Mathematics and Mathematical Geophysics

Siberian Branch of Russian Academy of Sciences
Novosibirsk, Russia

rozhenko@oapmg.sscc.ru

The abstract smoothing spline is defined as the solution of
minimization problem

σα := arg min
x∈X

{α‖Tx‖2 + ‖Ax− z‖2},
where X , Y , and Z are real Hilbert spaces, A : X → Z and T : X → Y

are bounded linear operators, z ∈ Z is a data vector, and α > 0 is a
smoothing parameter.

Given an estimate ε for a noise, the standard choice of the parameter
α is that σα should satisfy the residual equation

ϕ(α) := ‖Aσα − z‖ = ε. (1)

In the standard algorithms [1, 2], the residual equation is transformed
to the equation 1/ϕ(β) = 1/ε with β := 1/α, which is then solved with
Newton’s method.

Based on Tailor expansions of the residual operator Rαz := z −Aσα

and of its complementary operator Qβ = I − R1/β about given α0 and
β0 := 1/α0, respectively, [3], we obtain a family of two-sided estimates
for the values of ‖Rαz‖ and ‖R1/βz‖ and introduce a new method for
solving the equation (1). In comparison with Newton’s method which
converges quadratically, the convergence rate of our method can be of
any given order.
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DYADIC MULTIWAVELET TRANSFORMS 7

Pavel G. Severov
Voronezh State University, Russia

severovpg@gmail.com

For Alpert spline-multiwavelets of order r=2,3 the following equality
is valid:

r∑

k=1

|ϕ̂(k)(ξ)|2 + |ψ̂(k)(ξ)|2 =
r∑

k=1

|ϕ̂(k)(ξ/2)|2, ξ ∈ R.

As a consequence we have the following decomposition of unity:

∑

k

r∑

l=1

|ϕ̂(l)(2kω)|2 ≡ 1.
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56 International Conference

p-ADIC WAVELETS, PSEUDO-DIFFERENTIAL
OPERATORS AND EQUATIONS

V.M. Shelkovich
St.-Petersburg State Architecture and Civil Engineering University

St. Petersburg, Russia
shelkv@yahoo.com

We introduce a notion of p-adic multiresolution analysis (MRA) and
using the equation φ(x) =

∑p−1
r=0 φ

(1
px − r

p

)
, x ∈ Qp, as the “natural”

refinement equation we study a concrete MRA being an analog of Haar
MRA in L2(R) [4]. In contrast to the Haar MRA in L2(R), there
exist infinity many different p-adic orthonormal wavelet bases in L2(Qp)
generated by the same Haar MRA [3], [4]. In [1], it was proved that there
are no other orthogonal MRA based wavelet bases. We also study p-adic
refinement equations and their solutions [2]. One of them coincides with
the above “natural” refinement equation. A wide class of p-adic refinable
functions generating a MRA is described. It was proved in [1] that there
exist no orthogonal test refinable functions different from those described
in [2] and all these functions generate the same p-adic Haar MRA. We
also construct the Haar multidimensional wavelet bases by means of a
tensor product of one-dimensional MRAs.

Next, we study some problems related with the theory of
multidimensional p-adic wavelets in connection with the theory of
multidimensional p-adic pseudo-differential operators and pseudo-
differential equations.

The author was supported by DFG Project 436 RUS 113/809 and
DFG Project 436 RUS 113/951 and by Grant 05-01-04002-NNIOa of
Russian Foundation for Basic Research.
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POLYPHASE METHOD FOR THE CONSTRUCTION
OF MULTIVARIATE WAVELET FRAMES

M. Skopina
St. Petersburg State University

Department of Applied Mathematics and Control Processes
St. Petersburg, Russia

skopina@MS1167.spb.edu

Our polyphase method allows to construct a compactly supported
tight wavelet frame with a given approximation order starting with any
appropriate refinable mask. A general form for all appropriate initial
refinable masks is described by an explicit formula. An insignificant
modification of this method for the matrix dilations whose determinant
is odd leads to wavelet frames generated by symmetric/untisymmetric
wavelet functions. A method for the construction of dual wavelet frames
is also discussed.

TIGHT FRAMES OF SPECIAL FORM
Natalia A. Solovjova

Saint-Petersburg State University
The Faculty of Mathematics and Mechanics

St. Petersburg, Russia
4vinyo@gmail.com

Suppose U is a unitary (n × n)–matrix with eigenvalues λ1, . . . , λn

and corresponding orthonormal eigenvectors p1, . . . , pn. Let us fix a unit-
norm vector ϕ0 ∈ Cn and assuming that m ≥ n build the vector system

{
ϕ0, Uϕ0, U

2ϕ0, . . . , U
m−1ϕ0

}
. (1)

Theorem 1. The system (1) is a tight frame if and only if two
following conditions hold:
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1. the eigenvalues λ1, . . . , λn of the matrix U are distinct m-roots of
a certain number c ∈ C, |c| = 1;

2. |〈ϕ0, pk〉| = 1√
n
for all k ∈ 1 : n.

Let us examine the vectors

ηk = P ∗ϕk, k ∈ 0 : m− 1,

where P is a unitary matrix with the columns p1, . . . , pn.
Theorem 2. The system {η0, η1, . . . , ηm−1} is a general harmonic

frame if and only if conditions (1) and (2) of the theorem 1 hold.
As an application of theorem 2 it is shown how to reduce the Merce-

des-Benz frame to a general harmonic frame.
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BEST m-TERM APPROXIMATIONS
OF THE CLASSES Br

p,θ OF PERIODIC FUNCTIONS
BY POLINOMIALS BY HAAR SYSTEM

S.A. Stasyuk
Institute of Mathematics NASU, Kyiv, Ukraine

stasyuk@imath.kiev.ua

Let Rd, d ≥ 1, be the d-dimensional space of elements x =
(x1, . . . , xd), and let Lp([0, 1]d) be the space of all 1-periodic functions
f with norm

||f ||p =

(∫

[0,1]d
|f(x)|p dx

)1/p

, 1 ≤ p < ∞,

and with natural modification for p = ∞.
For given set D of elements of some Banach space B the best m-term

approximation of element f ∈ B with regard to system D is

σm(f,D)B = inf
gi∈D,cj

∥∥∥∥f −
m∑

j=1

cjgj

∥∥∥∥
B

.
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For classes Br
p,θ ⊂ Lq let σm(Br

p,θ,D)q = supf∈Br
p,θ

σm(f,D)Lq
.

Theorem. If 1 < p ≤ ∞, 1 < q < ∞, 1 ≤ θ ≤ ∞, d
p < r < 1 and

H = {HI}I is Haar system, then

σm(Br
p,θ,H)q ³ m−r.

For Nikol’skii classes Hr
p = Br

p,∞ result of theorem coinside in [1],
when d = 1. Let us remark also that the quantities σm(Br

p,θ, T )q in the
case of trigonometrical system T = {ei(k,x)}k were investigated in [2].
If we compare the theorem with corresponding estimates of quantities
σm(Br

p,θ, T )q from [2], we can see that the approximations on Haar
system are superior to the approximations on trigonometrical system
in some relations between the parameters p and q.
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PECULIARITIES OF MULTIDIMENSIONAL WAVELET
FUNCTIONS AND MULTIRATE SYSTEMS SYNTHESIS

Mikhail K. Tchobanou
Moscow Power Engineering Institute (Technical University)

Moscow, Russia
cmk2@orc.ru

The task of biorthogonal and orthogonal multidimensional wavelet
functions and multirate systems design is considered. The analytical
design methods for multidimensional nonseparable signals and multirate
systems under investigation were developed earlier by the author. The
conditions for multiresolution analysis construction are investigated, an
example for multidimensional Cohen condition checking is provided for
one of design methods.
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FRAMES IN BANACH SPACES
P. A. Terekhin

N. G. Chernyshevskii Saratov State University, Russia
terekhinpa@info.sgu.ru

Let X be the Banach space of sequences satisfying the following
condition: the system of unit vectors forms a basis in the space X . This
condition allows us to identify the dual space X∗ with some Banach
space of sequences Y . We say that a system of nonzero vectors {ϕn}∞n=1
forms a frame in a Banach space F with respect to the space of sequences
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X if the Fourier coefficients of an arbitrary continuous linear functional
g ∈ G = F ∗ satisfy the inequalities

A‖g‖G ≤ ‖{〈ϕn, g〉}∞n=1‖Y ≤ B‖g‖G,

where 0 < A ≤ B < ∞ are constants not depending on g. Any frame
is a repsentation system and any repsentation system is a frame with
respect to the its coefficient space. However, a representation system
may form frames with different space of sequences.

Theorem 1. Let {ϕn}∞n=1 be a frame in a Banach space F with
respect to the space of sequences X. Then the following conditions are
equivalent:

• the frame {ϕn}∞n=1 is a projection of a basis of an ambient space,
i.e., there exist a Banach space F ⊃ F with basis {en}∞n=1 whose
coefficient space coincides with X and projection P : F → F such
that ϕn = Pen, n = 1, 2, . . .;

• there exists a system {ψn}∞n=1 ⊂ F ∗ such that, for any f ∈ F ,
{〈f, ϕn〉}∞n=1 ∈ X and f =

∑∞
n=1〈f, ψn〉ϕn;

• the coefficient space of zero-series N = {x :
∑∞

n=1 xnϕn = 0} is
complemented in X.

This research was supported by the program “Leading Scientific
Schools” under grant no. 2970.2008.1.
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STEERABLE WAVELET FRAMES IN L2(R
D)

Michael Unser
Biomedical Imaging Group EPFL, CH-1015 Lausanne, Switzerland

Michael.Unser@epfl.ch

We introduce an Nth-order extension of the Riesz transform in d
dimensions. We prove that this generalized transform has the following
remarkable properties: shift-invariance, scale-invariance, inner- product
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preservation, and steerability. The pleasing consequence is that the
transform maps any primary wavelet frame (or basis) of L2(R

d)
into another "steerable"wavelet frame, while preserving the frame
bounds. Concretely, this means we can design reversible multi-scale
decompositions in which the analysis wavelets (feature detectors) can
be spatially rotated in any direction via a suitable linear combination
of wavelet coefficients. The concept provides a rigorous functional
counterpart to Simoncelli’s steerable pyramid whose construction was
entirely based on digital filter design. The proposed mechanism allows
for the specification of wavelets with any order of steerability in any
number of dimensions; it also yields a perfect reconstruction filterbank
algorithm. We illustrate the method using a Laplacian-like (or Mexican
hat) polyharmonic spline wavelet transform as our primary frame. We
display new wavelets that replicate the behavior of the Nth-order partial
derivatives of an isotropic Gaussian kernel.

This is joint work with Dimitri Van De Ville.

CUBIC SHAPE PRESERVING SPLINE INTERPOLATION
Yuri Volkov

Sobolev Institute of Mathematics, Novosibirsk, Russia
volkov@math.nsc.ru

In the talk we discuss the classical interpolation problem by C2 cubic
splines. In spite of the fact that cubic splines are considered as the
basic and universal tool in the majority of problems connected with
practical approximation of functions, they are not ideal, and in some
problems it is necessary to refuse them. Shape preserving interpolation,
i.e. approximation with the conservation of geometrical properties of
data such as positivity, monotonicity, convexity is among these problems.
Certainly, numerous modifications and generalizations of cubic splines
have been developed for such cases. However, here we almost always
loose some attractive properties of a classical spline such as smoothness,
accuracy, approximation order, simplicity of realization and so on. Thus
the problem of finding conditions of shape preserving for traditional
cubic spline interpolation is very actual.

We propose simple conditions for the cubic spline to inherit
geometrical properties of the initial function. Namely, if the interpolated
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function is k-monotone (the k-th divided differences of data are positive),
then these conditions will guarantee that the usual cubic interpolation
spline is k-monotone, i.e. its k-th derivative is positive. We examine
k = 0, 1, 2, 3, 4.

Our approach uses idea of [1], and is based on a new representation
of interpolation splines [2], [3].

This work was supported by the grant of the Department of
Mathematical Sciences, Russian Academy of Sciences (project 2009-3.8),
the Integration Projects grant, Siberian Division of the Russian Academy
of Sciences (project 2009-81), and the Joint Integration Projects grant,
Siberian and Ural Divisions of the Russian Academy of Sciences (project
2009-14).
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ON A CONSTRUCTION OF WAVELETS WITH
COMPACT SUPPORT BY MEANS OF SPLINES

Zygmunt Wronicz
AGH University of Science and Technology

Faculty of Applied Mathematics
Cracow, Poland

wronicz@agh.edu.pl

In 1982 J.O.Strömberg constructed a wavelet by means of piecewise
linear functions, namely a function ψ ∈ L2(R), such that the system
{ψj,k}j,k∈Z , ψj,k(x) = 2

j
2ψ

(
2jx− k

)
is an orthonormal basis in the

space L2(R). Unfortunately, the support of this wavelet is not bounded.
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In [1] the author constructed a piecewise linear wavelet with support
[0, 2].

The talk will be concerned with a construction of spline wavelets with
compact support.
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APPLICATION OF WAVELET TRANSFORM TO
INHOMOGENEOUS WAVE FIELD ANALYSIS

Li-Chung Wu, Laurence Zsu-Hsin Chuanga, Dong-Jiing
Doong, Chia Chuen Kao

National Cheng Kung University, Taiwan (R.O.C.)
jackalson18@gmail.com

The wavelet transform is now recognized as a useful, flexible, and
efficient technique to analyze signals and images which are obtained
from experiments or in-situ measurements. A new technique based on
the two-dimensional wavelet transform (2-D CWT) was developed in
this research to represent a wave field locally in both space domain
and spatial frequency domain. The required theories of 2-D CWT were
collected, defined and explained how its variables related to ocean
waves. The relationship between the energy spectra derived by wavelet
transform and wavenumber spectra of random waves was then presented
in this study. Several numerical simulations were carried out for random
ocean wave fields, in which a directional spectrum was assumed, to
justify the feasibility of 2-D CWT. The study shows that 2-D CWT is
capable of extracting the wavenumber spectrum from a wave field image
for any chosen location in the coastal area of varying water depths.
And then some more different wave conditions were simulated to verify
the accuracy of 2-D CWT in various sea bed slopes. It shows that
the accuracy level is sufficient to apply the 2-D CWT to the analysis
on ocean and coastal engineering applications.This study also shows a
shortcoming in 2-D CWT analysis. The estimated spectral energy and
the accuracy of detecting wave parameters are influenced by the distance
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of location for analyzing from the image edge. The accuracy increases
with increasing the distance from the edge. For the sake of obtaining high
accurate wave results, the distance between the edge and the calculated
location should be larger than half dominate wavelength of the wave
field. The comparisons of estimations to theoretical values for several
wave parameters show that the continuous wavelet transform is capable
of identifying the directional spectra and wave properties in shallow
water. After our study, we could conclude that the feasibility of CWT
on analyzing the wave image of random waves is palpable, even in the
coastal area.

GENERATION OF ENERGY AND CONTENT
FREQUENCY COMPATIBLE SIGNALS BASED ON

WAVELET TRANSFORM
Azad Yazdani

Department of Engineering, the University of Kurdistan
Sanandaj, Iran

a.yazdani@uok.ac.ir

Wavelet transforms can separate the data into various frequency
component, as does the Fourier transform. Unlike the Fourier transform,
however, the wavelet transform allows the removal of frequency
components at specific times in the data. The discrete wavelet transform
(DWT) easily incorporates computed inverse transforms (IDWTs) that
allow us to reconstruct the signal after we have identified, removed and
changed noisy or superfluous data.
Filtering a signal corresponds to the mathematical operation of the
convolutions of the signal with the impulse response to the filter. A half
band low-pass filter remove all frequencies that are above half of the
highest frequency in the signal. The output give the detail coefficients
(from the high-pass filter) and approximation coefficients (from the low-
pass filter). The approximate is then further decomposed using the same
wavelet decomposition step. While a wavelet analysis involves filtering
and down-sampling, the wavelet reconstruction process consists of up-
sampling and filtering. To synthesize a signal, up-sampling is the process
of lengthening a signal component by inserting zeros between samples.
An iterative procedure has been proposed to modify a signal, here
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recorded earthquake, so that they become compatible with content
frequency and energy of the target signal. The modification has been
achieved by decomposing the recorded and target signals through multi-
level discrete wavelet transform into wavelet coefficients (cAs, cDs) and
by using substitution in matrix process and the inversion operation,
IDWT, reconstruct a new signal. In a different iteration step, the sums
of the squares of wavelet coefficients are calculated as an indicator of
total energy of a signal. In matrix processing, the substituted wavelet
coefficient are scaled up/down based on this energy parameter to acquire
the target energy.

COIFLETS AND BOUNDARY VALUE PROBLEMS
A.D. Yunakovsky

Institute of Applied Physics RAS, Nizhny Novgorod, Russia
yun@appl.sci-nnov.ru

Several computational techniques for boundary value problems have
been developed. The central idea has its origins in the construction
of preconditioner in some functional space basis. The coiflet series
are very convenient for the approximate calculations since the number
of operations for calculating the expansion coefficients as well as the
number of operations for reconstruction of the function by means of
it’s coiflet coefficients, is in proportion with the units in the sample of
function.

However, the basis elements of these representations do not satisfy
the boundary conditions. This fact leads to a slow convergence of an
approximate solution to a precise one.

Convolutions of Green function of model operator satisfying assumed
boundary conditions with coiflets have the same compact supports
as the corresponding coiflets ψ laying rigorously inside of boundary.
Otherwise the convolutions are linear functions outside the support of
corresponding coiflets at our disposal intersecting the boundary.

As a result we get a band linear system with diagonal dominance for
constructing the approximate solution strongly satysfying the boundary
conditions.
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GENERALIZATIONS OF THE STRANG–FIX
CONDITIONS: CONNECTIONS WITH OPERATOR

ADAPTED WAVELETS
Victor G. Zakharov
ICMM, Perm, Russia

victor@icmm.ru

The Strang–Fix conditions are necessary and sufficient conditions for
integer shifts of a function f to generate all polynomials up to some
degree. The Strang–Fix conditions are based on the vanishing of the f̂

and its derivatives at a discrete set of points: {2πn : n ∈ ZN \ {0}}.
However we can consider more general set of points. Namely let a
function (distribution) f ∈ S ′(RN) and f̂(a) 6= 0, a ∈ CN ; then the
following conditions are equivalent (see [1,2] for one dimensional case):

(i) Dβf̂(a + 2πn) = 0, n ∈ ZN \ {0}, |β| = 0, . . . , L;

(ii) ∀β ∈ ZN
≥0, |β| ≤ L:

∑
k∈ZN pβ(k)eia·kf(x− k) = P|β|(x)eia·x,

where β = (β1, . . . , βN) ∈ ZN
≥0, |β| := β1 + · · · + βN , Dβ :=

Dβ1

1 · · ·DβN

N , Dj, j = 1, . . . , N , is the partial derivative with respect
to the jth coordinate, pβ denotes a monomial pβ(x) := xβ1

1 · · · xβN

N ,
x = (x1, . . . , xN) ∈ RN , and Pr(x) is a polynomial of total degree r.

Moreover, in multidimensional case the total degree of the
polynomials can be sometimes increased by one. Let f ∈ S ′(RN) satisfy
the Strang–Fix conditions (item (i) above) and let f̂(a) = 1. Fix an
arbitrary bijection of the set {jβ : jβ ∈ ZN

≥0, |jβ| = L + 1} onto the
integers {1, . . . , M}, M = (N+L)!

(L+1)!(N−1)! , and consider vectors F(x) :=(
D

1βf̂(x), . . . , D
Mβf̂(x)

)
, P(x) :=

(
p1β(x), . . . , pMβ(x)

)
. Suppose there

exists a vector space V ⊂ CM , V 6= {(0, . . . , 0)}; then V ⊥ F(a+2πn),
∀n ∈ ZN \ {0}, iff for any v ∈ V the following relation holds:∑

k∈ZN v · P(k)eia·kf(x− k) = eia·x (v · P(x) + PL(x)).
The generalized Strang–Fix conditions supply necessary and sufficient

(in one dimensional case) conditions to obtaining compactly supported
wavelets adapted to linear differential operators.

This research is partly supported by the RFBR grant No. 07-01-
96048.
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ON THE SERIES ARISING AT APPROXIMATION OF
PERIODIC, DIFFERENTIABLE FUNCTIONS BY THE

POISSON INTEGRALS
V.P. Zastavnyi

Donetsk National University, Donetsk, Ukraine
zastavn@rambler.ru

The following exact value of the remainder under approximation of
periodic, differentiable functions by the Poisson Integrals was found in
the paper of A.F.Timan in 1950. If 0 ≤ ρ < 1 and r ∈ N , then the
equality

sup
f∈W r

sup
x∈R

∣∣∣∣f(x)− 1

2π

∫ π

−π

f(x + t)Pρ(t) dt

∣∣∣∣ =

=
4

π

∞∑

k=0

(−1)k(r+1)(1− ρ2k+1)

(2k + 1)r+1 (1)

holds where Pρ(t) = 1−ρ2

1−2ρ cos t+ρ2 is the Poisson kernel and а W r the
set of all 2π-periodic functions having absolutely continuous derivatives
of the order (r − 1) such that |f (r)(x)| ≤ 1 for almost all x ∈ R.
For ρ → 1 − 0 and all r > 1 the first (r − 1) main terms of
an asymptotic expansion of quantity (1) in powers of ε = ln 1

ρ and
integral forms of the truncation errors also are determined in the same
paper. The full asymptotic expansion of (1) in powers of (1 − ρ) was
found by L.V.Malej in 1961 for r = 1 (rediscovered by E.L.Stark in
1973) and by K.M.Zhigallo with Yu.I.Harkevich in 2002 for all r ∈ N .
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For r > 1 all coefficients of this expansion contain both the explicit
quantities and quantities which are defined by a complicated recurrence
formula. An integral representation of the right side of (1) was found
by V.A.Baskakov in 1975 for r = 1, 2, 3, using this representation he
has found also on expansion of (1) in powers of ε = ln 1

ρ (0 < ε < π if
r = 1, 3 and 0 < ε < π

2 if r = 2) with coefficients which are expressed
by some integrals. For all r ∈ N and ρ → 1−0 an asymptotic expansion
of (1) in powers of ε = ln 1

ρ was found in the paper of Yu.I.Harkevich and
I.V.Kalchuk in 2004. Note that the coefficients of the their expansion are
expressed explicitly only for the first r terms and the remaining ones are
defined by a complicated recurrence formula.

We would like to expose, for some more general series that (1), an
expansion in powers of ε = ln 1

ρ having explicit coefficients and, as a
corollary, an expansion in powers of (1−ρ) also with explicit coefficients.

ПРИБЛИЖЕНИЕ ПЕРИОДИЧЕСКИХ ФУНКЦИЙ В
РАВНОМЕРНОЙ МЕТРИКЕ ПОЛИНОМАМИ ТИПА

ДЖЕКСОНА
B. B. Жук

Санкт-Петербургский государственный университет
zhuk@math.spbu.ru

Пусть

Φn(t) =
1

2π(n + 1)

(
sin (n+1)t

2

sin t
2

)2

— ядро Фейера, C - пространство непрерывных 2π-периодических
функций f с нормой ‖f‖ = maxx∈R |f(x)|, tk = 2πk

n+1 ,

Jn(f, x) =
2π

n + 1

n∑

k=0

f(tk)Φn(x− tk)

— полиномы Джексона функции f ,

σn(f, x) =

π∫

−π

f(x + t)Φn(t)dt
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— суммы Фейера функции f , ωr(g, h) - модуль непрерывности по-
рядка r функции g, F̃ - функция, тригонометрически сопряженная
с первообразной для функции f − 1

2π

∫ π

−π f .
Полиномы Jn(f) обладают (см. [1, с. 35,36]) свойствами: Jn(f) —

тригонометрический полином порядка не выше n, Jn(f, tk) = f(tk),
J
′
n(f, tk) = 0. Представляет интерес вопрос: как связано поведение

величины ‖f − Jn(f)‖ со структурными свойствами функции f . Он
изучался в ряде работ различных авторов (см., например, [2;3] и
указанную там литературу). В частности, в [3] показано, что для
любой f ∈ C

1

n + 1
max
0≤k≤n

(k + 1)‖Jn(f)− f‖ ³ α

(
f,

1

n + 1

)
,

где символ «³» не зависит от n и f ,

α(f, δ) = δ

∥∥∥∥∥∥

π∫

δ

f(·+ t) + f(· − t)− 2f(·)
t2

dt

∥∥∥∥∥∥
+ ω1(f, δ).

Мы устанавливаем результаты следующего типа:

En(f) + ‖J4n−1(f)− f‖ ³ ω1

(
f,

1

n + 1

)
+ (n + 1)ω2

(
F̃ ,

1

n + 1

)
,

sup
α∈R

‖Jn(f(·+α))−f(·+α)‖ ³ ω1

(
f,

1

n + 1

)
+(n+1)ω2

(
F̃ ,

1

n + 1

)
.

При этом серьёзное внимание уделяется постоянным, входящим в
полученные неравенства. В качестве примеров приведём следующие
утверждения:

‖f − Jn(f)‖ ≤ (2π2 + 3)ω1

(
f,

1

n + 1

)
+ 2(n + 1)ω2

(
F̃ ,

1

n + 1

)
,

‖Jn(f)− σn(f)‖ ≤ (2π2 + 3)ω1

(
f,

1

n + 1

)
+ 2(n + 1)ω2

(
F̃ ,

1

n + 1

)
.

В основе приведённых выше соотношений лежат теоремы общего
характера, применимые и к другим методам приближения. Отме-
тим, что подходы, использованные в обсуждаемых исследованиях,
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в значительной степени уже применялись автором ранее. В опреде-
лённой степени они нашли своё отражение в монографии [4].
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