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1
◦. Suppose we have two finite sets in R

n

A = {ai}
m
i=1 and B = {bj}

k
j=1.

In the papers [1, 2] a problem of a strict separation of the sets A and B by using
h hyperplanes was considered in case of conv(A) ∩B = ∅. It was found that this
problem could be reduced to the following extremal problem:

F (G) :=
1

m

m
∑

i=1

ϕi(G) +
1

k

k
∑

j=1

ψj(G) → inf, (1)

where

ϕi(G) = max
s∈1:h

[

〈ws, ai〉 − γs + 1
]

+
,

ψj(G) = min
s∈1:h

[

−〈ws, bj〉+ γs + 1
]

+
.

Unknown is the
(

h× (n+ 1)
)

-matrix G with rows (ws, γs), s ∈ 1 : h.
It is clear that F (G) ≥ 0 for all G. Condition F (G∗) = 0 describes the situation

of strict h-separation.
In this report we show that the problem (1) is equivalent to a finite number of

linear programming problems.
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◦. Denote Π =

{

S = (s1, . . . , sk) | sj ∈ 1 : h, j ∈ 1 : k
}

.

LEMMA. The following equality holds

inf
G
F (G) = min

S∈Π
inf
G

{ 1

m

m
∑

i=1

ϕi(G) +
1

k

k
∑

j=1

[

−〈wsj , bj〉+ γsj + 1
]

+

}

. (2)

P r o o f. At first we will establish the formula

k
∑

j=1

ψj(G) = min
S∈Π

k
∑

j=1

[

−〈wsj , bj〉+ γsj + 1
]

+
. (3)

Let ψj(G) =
[

−〈wsj , bj〉 + γsj + 1
]

+
for j ∈ 1 : k. Denote S = (s1, . . . , sk).

Then

k
∑

j=1

ψj(G) =
k

∑

j=1

[

−〈wsj , bj〉+ γsj + 1
]

+
≥ min

S∈Π

k
∑

j=1

[

−〈wsj , bj〉+ γsj + 1
]

+
. (4)

On the other hand, for S ∈ Π we have

k
∑

j=1

[

−〈wsj , bj〉+ γsj + 1
]

+
≥

k
∑

j=1

min
s∈1:h

[

−〈ws, bj〉+ γs + 1
]

+
=

k
∑

j=1

ψj(G). (5)

Taking the left side of (5) to the minimum over S ∈ Π, we obtain the inequality
that is opposite to (4). The equality (3) is set.

From (3) it follows that

F (G) = min
S∈Π

{ 1

m

m
∑

i=1

ϕi(G) +
1

k

k
∑

j=1

[

−〈wsj , bj〉+ γsj + 1
]

+

}

and

inf
G
F (G) = inf

G
min
S∈Π

{ 1

m

m
∑

i=1

ϕi(G) +
1

k

k
∑

j=1

[

−〈wsj , bj〉+ γsj + 1
]

+

}

. (6)

All that remains is to interchange the infimum overG and the minimum over S ∈ Π
in the right side of (6). The lemma is proved.
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◦. The lemma shows that the problem (1) is equivalent to a finite number of

extremal problems of a kind

1

m

m
∑

i=1

max
s∈1:h

[

〈ws, ai〉 − γs + 1
]

+
+

1

k

k
∑

j=1

[

−〈wsj , bj〉+ γsj + 1
]

+
→ inf

G
, (7)

corresponding to different S ∈ Π. In turn, the problem (7) is equivalent to a linear
programming problem

1

m

m
∑

i=1

pi +
1

k

k
∑

j=1

qj → inf, (8)

−〈ai, w
s〉+ γs + pi ≥ 1, i ∈ 1 : m, s ∈ 1 : h;

〈bj, w
sj〉 − γsj + qj ≥ 1, j ∈ 1 : k;

pi ≥ 0, i ∈ 1 : m; qj ≥ 0, j ∈ 1 : k.

We come to the following conclusion.

THEOREM 1. The problem (1) is equivalent to a finite number of linear pro-
gramming problems of a kind (8) in a sense that the solution of the problem (8)
with S ∈ Π that corresponds to the smallest objective function value is a solution
of the problem (1).

4
◦. Consider an example. Let the sets A and B on a plane are given which

consist of the points

a1 = (−2, 0), a2 = (2, 0), a3 = (0, 2), a4 = (0, 1),

and
b1 = (0, 3), b2 = (3, 0), b3 = (−3, 0),

respectively. It is obvious that conv(A) ∩ B = ∅ (see Figure 1).
We will solve the problem of 2-polyhedral separation. In this case,

n = 2, m = 4, k = 3, h = 2.

Let us find out how does the problem (8) look like if S = (1, 1, 2). We write
the vector of unknowns

z = (w1

1, w
1

2, γ1, w
2

1, w
2

2, γ2, p1, p2, p3, p4, q1, q2, q3)
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Figure 1

and the matrix of constraints

D =





































2 0 1 1
−2 0 1 1
0 −2 1 1
0 −1 1 1

2 0 1 1
−2 0 1 1
0 −2 1 1
0 −1 1 1

0 3 −1 1
3 0 −1 1

−3 0 −1 1





































.

The problem (8) takes the form

1

4

4
∑

i=1

pi +
1

3

3
∑

j=1

qj → inf, (9)

Dz ≥ e,

pi ≥ 0, i ∈ 1 : 4; qj ≥ 0, j ∈ 1 : 3.

The solution of this problem is a vector

z = (111.2210, 112.0012, 272.9097, −78.1474, 27.3511, 192.1601,

0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000).

The minimum objective function value is zero, 2-polyhedral separation of the sets A
and B in case of S = (1, 1, 2) is shown on Figure 2.



5

b3 b2

b1

Figure 2

Note that setting the vector of indices S to (1, 1, 2) corresponds to partitioning
the set B into two subsets {b1, b2} ∪ {b3}. These two subsets are concordantly
separated from the set A with two straight lines

〈w1, x〉 = γ1 and 〈w2, x〉 = γ2.

There are two more ways to partition the set B into two subsets:

{b1, b3} ∪ {b2} and {b2, b3} ∪ {b1}.

They correspond to the vectors S = (1, 2, 1) and S = (2, 1, 1).
The result of 2-polyhedral separation in case of S = (1, 2, 1) is shown on

Figure 3.

b3 b2

b1

Figure 3

This case is symmetric to the case S = (1, 1, 2).
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In case of S = (2, 1, 1) there is no 2-polyhedral separation (see Figure 4).

b3 b2

b1

Figure 4

A solution of the problem similar to (9) is a vector

z = (0.0000, −112.0230, −1.0000, 0.0000, 111.8673, 273.7824,

2.0000, 2.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000).

The minimum objective function value equals to one.

5
◦. In general, the assignment of the vector S ∈ Π corresponds to partitioning

the set B that consists of k vectors into h subsets. It is the number of such par-
titions that determines the number of linear programming problems of a kind (8)
that the solution of the problem (1) is being reduced to.

If you know beforehand that the sets A and B are h–polyhedral separable, the
solution of the problem (1) can be simplified. After partitioning the set B into
h subsets, you should independently solve the problems of linear separation of each
of these subsets from the set A. In case of a successful separation, the collection
of separating hyperplanes forms a solution of the problem (1).

In the above example, when S = (1, 1, 2), we will independently solve the
problems of linear separation of the sets {b1, b2} and {b3} from A. Let us write
the corresponding linear programming problems (cf. [3])

1

4

4
∑

i=1

pi +
1

2

2
∑

j=1

qj → inf,

−〈ai, w
1〉+ γ1 + pi ≥ 1, i ∈ 1 : 4;

〈bj, w
1〉 − γ1 + qj ≥ 1, j ∈ 1 : 2;

pi ≥ 0, i ∈ 1 : 4; qj ≥ 0, j ∈ 1 : 2,
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and

1

4

4
∑

i=1

pi + q3 → inf,

−〈ai, w
2〉+ γ2 + pi ≥ 1, i ∈ 1 : 4;

〈b3, w
2〉 − γ2 + q3 ≥ 1;

pi ≥ 0, i ∈ 1 : 4; q3 ≥ 0.

Their solutions {w1, γ1} and {w2, γ2} define two straight lines that strictly sepa-
rate A from B (see Figure 5).

Figure 5
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